Abstract
The ability of bone substitutes to promote bone fusion is contigent upon the presence of osteoinductive factors in the bone environment at the fusion site. Osteoblast progenitor cells are among these environmental osteoinductive factors, and one of the most abundant and available sources of osteoblastic cells is the bone marrow. As far as biological conditions are concerned, the vertebral interbody space appears as a favorable site for fusion, as it is surrounded by spongy bone, theoretically rich in osteogenic cells. This site may, however, not be as rich in osteogenic precursor cells especially at the time of grafting, because decortication of the vertebral end plates during the grafting process may modifiy cell content of the surrounding spongy bone. We tested this hypothesis by comparing the abundance of human osteogenic precursor cells in bone marrow derived from the iliac crest, the vertebral body, and the decorticated intervertebral body space. The number of potential osteoblast progenitors in each site was estimated by counting the alkaline phosphatase–expressing colony-forming units (CFU-AP). The results, however, demonstrate that the vertebral interbody space is actually poorer in osteoprogenitor cells than the iliac crest (P<0.001) and vertebral body (P<0.01), especially at the time of graft implantation. In light of our results, we advocate addition of iliac crest bone marrow aspirate to increase the success rate of vertebral interbody fusion.
This is a preview of subscription content, access via your institution.



References
Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development: bone repair and skeletal regeneration therapy. J Cell Biochem 56:283–294
Curylo LJ, Johnstone B, Petersilag CA, Janicki JA, Yoo JU (1999) Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit: posterolateral spine fusion model. Spine 24:434–439
Delécrin J, Deschamps C, Romih M, Heymann D, Passuti N (2001) Influence of bone environment on ceramic osteointegration in spinal fusion: comparison of bone-poor sites and bone-rich sites. Eur Spine J 10:S110–S113
Einhorn TA (1995) Current concepts review: enhancement of fracture-healing. J Bone Joint Surg 77A:940–956
George FM, Hironoti N, Cynthia AB, Kirk AE (2001) Age and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125
Lukasz JC, Brian J, Cheryl AP, Joseph AJ, Jung UY (1999) Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine 24:434–439
Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79:1699–1709
Ohgushi H, Goldberg VM, Caplan AI (1989) Hetertopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 7:568–578
Rickard DJ, Kassem M, Hefferan TE, Sakar G, SelsbergTC, Riggs BL (1996) Isolation and characterisation of osteoblast precursor cells from human bone marrow. J Bone Miner Res 11:312–324
Toquet L, Rohanizadeh R, Guicheux J, Couillaud S, Passuti N, Heymann D (1999) Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphsic calcium phosphate ceramic. J Biomed Mater Res 44:98–108
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Romih, M., Delécrin, J., Heymann, D. et al. The vertebral interbody grafting site’s low concentration in osteogenic progenitors can greatly benefit from addition of iliac crest bone marrow. Eur Spine J 14, 645–648 (2005). https://doi.org/10.1007/s00586-004-0827-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00586-004-0827-9