Skip to main content
Log in

Effect of constrained posterior screw and rod systems for primary stability: Biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Cervical corpectomy is a frequently used technique for a wide variety of spinal disorders. The most commonly used approach is anterior, either with or without plating. The results for single-level corpectomy are better than in multilevel procedures. Nevertheless, hardware- or graft-related complications are observed. In the past, constrained implant systems were developed and showed encouraging stability, especially for posterior screw and rod systems in the lumbar spine. In the cervical spine, few reports about the primary stability of constrained systems exist. Therefore, in the present study we evaluated the primary stability of posterior screw and rod systems, constrained and non-constrained, in comparison with anterior plating and circumferential instrumentations in a non-destructive set-up, by loading six human cadaver cervical spines with pure moments in a spine tester. Range of motion and neutral zone were measured for lateral bending, flexion/extension and axial rotation. The testing sequence consisted of: (1) stable testing; (2) testing after destabilization and cage insertion; (3a) additional non-constrained screw and rod system with lateral mass screws, (3b) with pedicle screws instead of lateral mass screws; (4a) constrained screw and rod system with lateral mass screws, (4b) with pedicle screws instead of lateral mass screws; (5) 360°set-up; (6) anterior plate. The stability of the anterior plate was comparable to that of the non-constrained system, except for lateral bending. The primary stability of the non-constrained system could be enhanced by the use of pedicle screws, in contrast to the constrained system, for which a higher primary stability was still found in axial rotation and flexion/extension. For the constrained system, the achievable higher stability could obviate the need to use pedicle screws in low instabilities. Another benefit could be fewer hardware-related complications, higher fusion rate, larger range of instabilities to be treated by one implant system, less restrictive postoperative treatment and possibly better clinical outcome. From a biomechanical standpoint, in regard to primary stability the constrained systems, therefore, seem to be beneficial. Whether this leads to differences in clinical outcome has to be evaluated in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdu WA, Wilber RG, Emery SE (1994) Pedicular transvertebral screw fixation of the lumbosacral spine in spondylolisthesis. A new technique for stabilization. Spine 19:710–715

    CAS  PubMed  Google Scholar 

  2. Abumi K, Kaneda K (1997) Pedicle screw fixation for nontraumatic lesions of the cervical spine. Spine 22:1853–1863

    Article  CAS  PubMed  Google Scholar 

  3. Abumi K, Itoh H, Taneichi H, Kaneda K (1994) Transpedicular screw fixation for traumatic lesions of the middle and lower cervical spine: description of the techniques and preliminary report. J Spinal Disord 7:19–28

    CAS  PubMed  Google Scholar 

  4. Aebi M (1988) Correction of degenerative scoliosis of the lumbar spine. A preliminary report. Clin Orthop 80–86

  5. Aebi M, Etter C, Kehl T, Thalgott J (1987) Stabilization of the lower thoracic and lumbar spine with the internal spinal skeletal fixation system. Indications, techniques, and first results of treatment. Spine 12:544–551

    CAS  PubMed  Google Scholar 

  6. Ani N, Keppler L, Biscup RS, Steffee AD (1991) Reduction of high-grade slips (grades III-V) with VSP instrumentation. Report of a series of 41 cases. Spine 16:S302–310

    CAS  PubMed  Google Scholar 

  7. Ashman RB, Galpin RD, Corin JD, Johnston CE 2nd (1989) Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model. Spine 14:1398–1405

    CAS  PubMed  Google Scholar 

  8. Bernhardt M, Swartz DE, Clothiaux PL, Crowell RR, White AA 3rd (1992) Posterolateral lumbar and lumbosacral fusion with and without pedicle screw internal fixation. Clin Orthop 109–115

  9. Brodke DS, Gollogly S, Alexander Mohr R, Nguyen BK, Dailey AT, Bachus aK (2001) Dynamic cervical plates: biomechanical evaluation of load sharing and stiffness. Spine 26:1324–1329

    Article  CAS  PubMed  Google Scholar 

  10. Brown JA, Havel P, Ebraheim N, Greenblatt SH, Jackson WT (1988) Cervical stabilization by plate and bone fusion. Spine 13:236–240

    CAS  PubMed  Google Scholar 

  11. Do Koh Y, Lim TH, Won You J, Eck J, An HS (2001) A biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine 26:15–21

    PubMed  Google Scholar 

  12. Eleraky MA, Llanos C, Sonntag VK (1999) Cervical corpectomy: report of 185 cases and review of the literature. J Neurosurg 90:35–41

    CAS  Google Scholar 

  13. ElSaghir H, Bohm H (2000) Anterior versus posterior plating in cervical corpectomy. Arch Orthop Trauma Surg 120:549–554

    Article  CAS  PubMed  Google Scholar 

  14. Emery SE, Fisher JR, Bohlman HH (1997) Three-level anterior cervical discectomy and fusion: radiographic and clinical results. Spine 22:2622–2624; discussion 2625

    Article  CAS  PubMed  Google Scholar 

  15. Epstein NE (2001) Reoperation rates for acute graft extrusion and pseudarthrosis after one-level anterior corpectomy and fusion with and without plate instrumentation: etiology and corrective management. Surg Neurol 56:73–80

    Article  CAS  PubMed  Google Scholar 

  16. Epstein NE (2002) Anterior dynamic plates in complex cervical reconstructive surgeries. J Spinal Disord Tech 15:221–227

    PubMed  Google Scholar 

  17. Epstein NE (2003) Anterior cervical dynamic ABC plating with single level corpectomy and fusion in forty-two patients. Spinal Cord 41:153–158

    Article  CAS  PubMed  Google Scholar 

  18. Gaines RW Jr (2000) Current concepts review: The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am 82:1458–1476

    Google Scholar 

  19. Grubb MR, Currier BL, Stone J, Warden KE, An KN (1997) Biomechanical evaluation of posterior cervical stabilization after a wide laminectomy. Spine 22:1948–1954

    Article  CAS  PubMed  Google Scholar 

  20. Gurr KR, McAfee PC, Warden KE, Shih CM (1989) Roentgenographic and biomechanical analysis of lumbar fusions: a canine model. J Orthop Res 7:838–848

    CAS  PubMed  Google Scholar 

  21. Herman JM, Sonntag VK (1994) Cervical corpectomy and plate fixation for postlaminectomy kyphosis. J Neurosurg 80:963–970

    CAS  PubMed  Google Scholar 

  22. Horgan MA, Kellogg JX, Chesnut RM (1999) Posterior cervical arthrodesis and stabilization: an early report using a novel lateral mass screw and rod technique. Neurosurgery 44:1267–1271; discussion 1271–1272

    PubMed  Google Scholar 

  23. Horowitch A, Peek RD, Thomas JC Jr, Widell EH Jr, DiMartino PP, Spencer CW 3rd, Weinstein J, Wiltse LL (1989) The Wiltse pedicle screw fixation system. Early clinical results. Spine 14:461–467

    CAS  PubMed  Google Scholar 

  24. Johnston CE 2nd, Ashman RB, Baird AM, Allard RN (1990) Effect of spinal construct stiffness on early fusion mass incorporation. Experimental study. Spine 15:908–912

    PubMed  Google Scholar 

  25. Johnston CE 2nd, Welch RD, Baker KJ, Ashman RB (1995) Effect of spinal construct stiffness on short segment fusion mass incorporation. Spine 20:2400–2407

    PubMed  Google Scholar 

  26. Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine 22:977–982

    Article  CAS  PubMed  Google Scholar 

  27. Kotani Y, Cunningham BW, Abumi K, McAfee PC (1994) Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine 19:2529–2539

    CAS  PubMed  Google Scholar 

  28. Krag MH (1991) Biomechanics of thoracolumbar spinal fixation. A review. Spine 16:S84–99

    CAS  PubMed  Google Scholar 

  29. Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13:375–377

    CAS  PubMed  Google Scholar 

  30. Leong JC, Chun SY, Grange WJ, Fang D (1983) Long-term results of lumbar intervertebral disc prolapse. Spine 8:793–799

    CAS  PubMed  Google Scholar 

  31. Lowery GL, McDonough RF (1998) The significance of hardware failure in anterior cervical plate fixation. Patients with 2- to 7-year follow-up. Spine 23:181–186; discussion 186–187

    Article  CAS  PubMed  Google Scholar 

  32. Marchesi DG, Aebi M (1992) Pedicle fixation devices in the treatment of adult lumbar scoliosis. Spine 17:S304–309

    CAS  PubMed  Google Scholar 

  33. Mayr MT, Subach BR, Comey CH, Rodts GE, Haid RW Jr (2002) Cervical spinal stenosis: outcome after anterior corpectomy, allograft reconstruction, and instrumentation. J Neurosurg 96:10–16

    PubMed  Google Scholar 

  34. McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1989) 1989 Volvo Award in basic science. Device-related osteoporosis with spinal instrumentation. Spine 14:919–926

    CAS  PubMed  Google Scholar 

  35. McAfee PC, Weiland DJ, Carlow JJ (1991) Survivorship analysis of pedicle spinal instrumentation. Spine 16:S422–427

    CAS  PubMed  Google Scholar 

  36. Newman M (1993) The outcome of pseudarthrosis after cervical anterior fusion. Spine 18:2380–2382

    CAS  PubMed  Google Scholar 

  37. Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292–300

    CAS  PubMed  Google Scholar 

  38. Paramore CG, Dickman CA, Sonntag VK (1996) Radiographic and clinical follow-up review of Caspar plates in 49 patients. J Neurosurg 84:957–961

    CAS  PubMed  Google Scholar 

  39. Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine 20:743–747

    CAS  PubMed  Google Scholar 

  40. Phillips FM, Carlson G, Emery SE, Bohlman HH (1997) Anterior cervical pseudarthrosis. Natural history and treatment. Spine 22:1585–1589

    Article  CAS  PubMed  Google Scholar 

  41. Rahm MD, Hall BB (1996) Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study. J Spinal Disord 9:392–400

    CAS  PubMed  Google Scholar 

  42. Richman JD, Daniel TE, Anderson DD, Miller PL, Douglas RA (1995) Biomechanical evaluation of cervical spine stabilization methods using a porcine model. Spine 20:2192–2197

    CAS  PubMed  Google Scholar 

  43. Richter M, Wilke HJ, Kluger P, Neller S, Claes L, Puhl W (2000) Biomechanical evaluation of a new modular rod-screw implant system for posterior instrumentation of the occipito-cervical spine: in-vitro comparison with two established implant systems. Eur Spine J 9:417–425

    Article  CAS  PubMed  Google Scholar 

  44. Richter M, Schmidt R, Claes L, Puhl W, Wilke HJ (2002) Posterior atlantoaxial fixation: biomechanical in vitro comparison of six different techniques. Spine 27:1724–1732

    Article  PubMed  Google Scholar 

  45. Sasso RC, Ruggiero RA Jr, Reilly TM, Hall PV (2003) Early reconstruction failures after multilevel cervical corpectomy. Spine 28:140–142

    Article  PubMed  Google Scholar 

  46. Schmidt R, Wilke H-J, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corpectomies: biomechanical in vitro comparison of different implants including constrained and non-constrained posterior instrumentations. Spine 28:1821–1828

    Article  PubMed  Google Scholar 

  47. Seifert JL, Sairyo K, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Chesmel KD (1999) Stability analysis of an enhanced load sharing posterior fixation device and its equivalent conventional device in a calf spine model. Spine 24:2206–2213

    Article  PubMed  Google Scholar 

  48. Seifert V, Stolke D (1991) Multisegmental cervical spondylosis: treatment by spondylectomy, microsurgical decompression, and osteosynthesis. Neurosurgery 29:498–503

    CAS  PubMed  Google Scholar 

  49. Spivak JM, Chen D, Kummer FJ (1999) The effect of locking fixation screws on the stability of anterior cervical plating. Spine 24:334–338

    Article  CAS  PubMed  Google Scholar 

  50. Steffee AD, Brantigan JW (1993) The variable screw placement spinal fixation system. Report of a prospective study of 250 patients enrolled in Food and Drug Administration clinical trials. Spine 18:1160–1172

    CAS  PubMed  Google Scholar 

  51. Tippets RH, Apfelbaum RI (1988) Anterior cervical fusion with the Caspar instrumentation system. Neurosurgery 22:1008–1013

    CAS  PubMed  Google Scholar 

  52. Tominaga T, Koshu K, Mizoi K, Yoshimoto T (1994) Anterior cervical fixation with the titanium locking screw-plate: a preliminary report. Surg Neurol 42:408–413

    Article  CAS  PubMed  Google Scholar 

  53. Wetzel FT, Brustein M, Phillips FM, Trott S (1999) Hardware failure in an unconstrained lumbar pedicle screw system. A 2-year follow-up study. Spine 24:1138–1143

    Article  CAS  PubMed  Google Scholar 

  54. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97

    CAS  PubMed  Google Scholar 

  55. Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19

    Article  CAS  PubMed  Google Scholar 

  56. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  CAS  PubMed  Google Scholar 

  57. Yahiro MA (1994) Comprehensive literature review. Pedicle screw fixation devices. Spine 19:2274S–2278S

    CAS  PubMed  Google Scholar 

  58. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18:983–991

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Support was provided by Ulrich Medizintechnik, Ulm, Germany

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., Wilke, HJ., Claes, L. et al. Effect of constrained posterior screw and rod systems for primary stability: Biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model. Eur Spine J 14, 372–380 (2005). https://doi.org/10.1007/s00586-004-0763-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-004-0763-8

Keywords

Navigation