Skip to main content

Advertisement

Log in

Biofidelic whole cervical spine model with muscle force replication for whiplash simulation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Whiplash has been simulated using volunteers, whole cadavers, mathematical models, anthropometric test dummies, and whole cervical spines. Many previous in vitro whiplash models lack dynamic biofidelity. The goals of this study were to (1) develop a new dynamic whole cervical spine whiplash model that will incorporate anterior, lateral and posterior muscle force replication, (2) evaluate its performance experimentally and (3) compare the results with in vivo data. To evaluate the new model, rear-impact whiplash simulations were performed using the incremental trauma approach at maximum measured T1 horizontal accelerations of 3.6 g, 4.7 g, 6.6 g, and 7.9 g. The kinematic response of the new model, e.g., peak head–T1 extension and peak intervertebral rotations, were compared with the corresponding in vivo data. The average peak head–T1 extension was within the in vivo corridor during the 3.6 g whiplash simulation (9.1 kph delta V). The peak in vivo intervertebral rotations obtained during a 4.6 g whiplash simulation of a young volunteer were within, or only marginally in excess of, the 95% confidence limits of the average peak intervertebral rotations measured during the 4.7 g whiplash simulation of the present study. Thus, the new whole cervical spine model with muscle force replication produced biofidelic dynamic responses to simulated whiplash. The new model is capable of generating important biomechanical data that may help improve our understanding of whiplash injuries and injury mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Association for the Advancement of Automotive Medicine (1990) The abbreviated injury scale, 1990 revision. AAAM, Des Plaines, IL, USA

  2. Atlas OK, Dodds SD, Panjabi MM (2002) Single and incremental trauma models: a biomechanical assessment of spinal instability. Eur Spine J 12:205–210

    PubMed  Google Scholar 

  3. Bailey M (1996) Assessment of impact severity in minor motor vehicle collisions. Journal of Musculoskeletal Pain 4:21–38

    Google Scholar 

  4. Barnsley L, Lord S, Bogduk N (1993) Comparative local anaesthetic blocks in the diagnosis of cervical zygapophysial joint pain. Pain 55:99–106

    Article  CAS  PubMed  Google Scholar 

  5. Barnsley L, Lord SM, Wallis BJ, Bogduk N (1995) The prevalence of chronic cervical zygapophysial joint pain after whiplash. Spine 20:20–25

    CAS  PubMed  Google Scholar 

  6. Becker EB (1972) Measurement of mass distribution parameters of anatomical segments. Society of Automotive Engineers Paper No. 720964

  7. Bernhardt P, Wilke HJ, Wenger KH et al (1999) Multiple muscle force simulation in axial rotation of the cervical spine. Clin Biomech (Bristol, Avon) 14:32–40

    Google Scholar 

  8. Bostrom O, Fredriksson R, Haland Y et al (2000) Comparison of car seats in low speed rear-end impacts using the BioRID dummy and the new neck injury criterion (NIC). Accid Anal Prev 32:321–328

    Article  CAS  PubMed  Google Scholar 

  9. Braakman R, Penning L (1971) Injuries of the cervical spine. Excerpta Medica, Amsterdam

  10. Brault JR, Siegmund GP, Wheeler JB (2000) Cervical muscle response during whiplash: evidence of a lengthening muscle contraction. Clin Biomech (Bristol, Avon) 15:426–435

    Google Scholar 

  11. Buonocore E, Hartman JT, Nelson CL (1966) Cineradiograms of cervical spine in diagnosis of soft-tissue injuries. JAMA 198:143–147

    Article  CAS  Google Scholar 

  12. Camacho DL, Nightingale RW, Robinette JJ (1997) Experimental flexibility measurements for the development of a computational head-neck model validated for near-vertex head impact. Society of Automotive Engineers Paper No. 973345

  13. Cholewicki J, Panjabi MM, Nibu K et al (1998) Head kinematics during in vitro whiplash simulation. Accid Anal Prev 30:469–479

    Article  CAS  PubMed  Google Scholar 

  14. Cusick JF, Pintar FA, Yoganandan N (2001) Whiplash syndrome: kinematic factors influencing pain patterns. Spine 26:1252–1258

    Article  CAS  PubMed  Google Scholar 

  15. Dauvilliers F, Bendjellal F, Weiss M (1994) Development of a finite element model of the neck. Society of Automotive Engineers Paper No. 942210

  16. Davidsson J (2000) Development of a mechanical model for rear impacts: evaluation of volunteer responses and validation of the model. Dissertation, Chalmers University of Technology, Sweden

    Google Scholar 

  17. Davidsson J, Svensson M, Flogard A et al (1998) BioRID I—A new biofidelic rear impact dummy. International Research Council on the Biomechanics of Impacts. Goteborg, Sweden

  18. Davis SJ, Teresi LM, Bradley WG Jr, Ziemba MA, Bloze AE (1991) Cervical spine hyperextension injuries: MR findings. Radiology 180:245–251

    CAS  PubMed  Google Scholar 

  19. de Jager M (1996) Mathematical head-neck models for acceleration impacts. Dissertation, University of Eindhoven, The Netherlands

  20. de Jager M, Sauren A, Thunnissen J, Wismans J (1996) A global and a detailed mathematical model for head-neck dynamics. Society of Automotive Engineers Paper No. 962430

  21. Dvorak J, Panjabi MM, Novotny JE, Antinnes JA (1991) In vivo flexion/extension of the normal cervical spine. J Orthop Res 9:828–834

    CAS  PubMed  Google Scholar 

  22. Eichberger A, Darok M, Steffan H et al (2000) Pressure measurements in the spinal canal of post-mortem human subjects during rear-end impact and correlation of results to the neck injury criterion. Accid Anal Prev 32:251–260

    Article  CAS  PubMed  Google Scholar 

  23. Fast A, Sosner J, Begeman P, Thomas MA, Chiu T (2002) Lumbar spinal strains associated with whiplash injury: a cadaveric study. Am J Phys Med Rehabil 81:645–650

    Article  PubMed  Google Scholar 

  24. Geigl BC, Steffan H, Leinzinger P et al (1994) The movement of the head and cervical spine during rear-end impact. International Research Conference on the Biomechanics of Impacts. Lyon, France

  25. Geigl BC, Steffan H, Leinzinger P et al (1995) Comparison of head-neck kinematics during rear end impact between standard hybrid III, RID neck, volunteers and PMTO’s. International Conference on the Biomechanics of Impacts. Brunnen, Switzerland

  26. Grauer JN, Panjabi MM, Cholewicki J, Nibu K, Dvorak J (1997) Whiplash produces an S-shaped curvature of the neck with hyperextension at lower levels. Spine 22:2489–2494

    Article  CAS  PubMed  Google Scholar 

  27. Hattori S, Oda H, Kawai S (1981) Cervical intradiscal pressure in movements and traction of the cervical spine. Z Orthop 119:568–569

    Google Scholar 

  28. Hodgson VR, Thomas LM (1980) Mechanisms of cervical spine injury during impact to the protected head. 24th STAPP Car Crash Conference, Society of Automotive Engineers. Warrendale, PA, USA

  29. Horst M (2002) Human head neck response in frontal, lateral and rear end impact loading: modelling and validation Dissertation, Eindhoven University of Technology, The Netherlands

  30. Ivancic PC, Pearson AM, Panjabi MM, Ito S (2004) Injury of the anterior longitudinal ligament during whiplash simulation. Eur Spine J 13:61–68

    Google Scholar 

  31. Jonsson H Jr, Bring G, Rauschning W, Sahlstedt B (1991) Hidden cervical spine injuries in traffic accident victims with skull fractures. J Spinal Disord 4:251–263

    PubMed  Google Scholar 

  32. Jordan A, Mehlsen J, Bulow PM, Ostergaard K, Danneskiold-Samsoe B (1999) Maximal isometric strength of the cervical musculature in 100 healthy volunteers. Spine 24:1343–1348

    Article  CAS  PubMed  Google Scholar 

  33. Kaneoka K, Ono K, Inami S, Yokoi N, Hayashi K (1997) Human cervical spine kinematics during whiplash loading. International Conference on New Frontiers in Biomechanical Engineering. Tokyo, Japan

  34. Kaneoka K, Ono K, Inami S, Hayashi K (1999) Motion analysis of cervical vertebrae during whiplash loading. Spine 24:763–769

    Article  CAS  PubMed  Google Scholar 

  35. Kettler A, Hartwig E, Schultheiss M, Claes L, Wilke HJ (2002) Mechanically simulated muscle forces strongly stabilize intact and injured upper cervical spine specimens. J Biomech 35:339–346

    Article  CAS  PubMed  Google Scholar 

  36. Krafft M, Kullgren A, Tingvall C, Bostrom O, Fredriksson R (2000) How crash severity in rear impacts influences short- and long-term consequences to the neck. Accid Anal Prev 32:187–195

    Article  CAS  PubMed  Google Scholar 

  37. Kumar S, Narayan Y, Amell T (2002) An electromyographic study of low-velocity rear-end impacts. Spine 27:1044–1055

    Article  PubMed  Google Scholar 

  38. Lind B, Sihlbom H, Nordwall A, Malchau H (1989) Normal range of motion of the cervical spine. Arch Phys Med Rehabil 70:692–695

    CAS  PubMed  Google Scholar 

  39. Linder A (2000) A new mathematical neck model for a low-velocity rear-end impact dummy: evaluation of components influencing head kinematics. Accid Anal Prev 32:261–269

    Article  CAS  PubMed  Google Scholar 

  40. Linder A, Bergman U, Svensson M, Viano D (2000) Evaluation of the BioRID P3 and the Hybrid III in pendulum impacts to the back—a comparison to human subject test data. Annu Proc Assoc Adv Automot Med 44:283–297

    CAS  PubMed  Google Scholar 

  41. Linder A, Olsson T, Truedsson N et al (2001) Dynamic performances of different seat designs for low to medium velocity rear impact. Annu Proc Assoc Adv Automot Med 45:187–201

    CAS  PubMed  Google Scholar 

  42. Lord SM, Barnsley L, Bogduk N (1995) Percutaneous radiofrequency neurotomy in the treatment of cervical zygapophysial joint pain: a caution. Neurosurgery 36:732–739

    CAS  PubMed  Google Scholar 

  43. Lord SM, Barnsley L, Wallis BJ, Bogduk N (1996) Chronic cervical zygapophysial joint pain after whiplash. A placebo-controlled prevalence study. Spine 21:1737–1744

    Article  CAS  PubMed  Google Scholar 

  44. Lord SM, Barnsley L, Wallis BJ, McDonald GJ, Bogduk N (1996) Percutaneous radio-frequency neurotomy for chronic cervical zygapophyseal-joint pain. N Engl J Med 335:1721–1726

    Article  CAS  PubMed  Google Scholar 

  45. Luan F, Yang KH, Deng B et al (2000) Qualitative analysis of neck kinematics during low-speed rear-end impact. Clin Biomech (Bristol, Avon) 15:649–657

    Google Scholar 

  46. Magnusson ML, Pope MH, Hasselquist L et al (1999) Cervical electromyographic activity during low-speed rear impact. Eur Spine J 8:118–125

    Article  CAS  PubMed  Google Scholar 

  47. Matsushita T, Sato TB, Hirabayashi K et al (1994) X-ray study of the human neck motion due to head inertia loading. Society of Automotive Engineers Paper No. 942208. 1994

  48. McConnell WE, Howard RP, Guzman HM et al (1993) Analysis of human test subject kinematic responses to low velocity rear end impacts. Society of Automotive Engineers Paper No. 930889

  49. McConnell WE, Howard RP, Poppel JV et al (1995) Human head and neck kinematics after low velocity rear-end impacts—understanding “whiplash.” Society of Automotive Engineers Paper No. 952724

  50. Mertz HJ, Patrick LM (1971) Strength and response of the human neck. Society of Automotive Engineers Paper 710855. Warrendale, PA

  51. Moroney SP, Schultz AB, Miller JA (1988) Analysis and measurement of neck loads. J Orthop Res 6:713–720

    CAS  PubMed  Google Scholar 

  52. Nitsche S, Krabbel G, Appel H (1996) Validation of a finite element model of the human neck. International Conference on the Biomechanics of Impacts

  53. Ono K, Kanno M (1993) Influences of the physical parameters on the risk of neck injuries in low impact speed rear-end collisions. International Conference on the Biomechanics of Impacts. Eindhoven, The Netherlands

  54. Ono K, Kanno M (1996) Influences of the physical parameters on the risk to neck injuries in low impact speed rear-end collisions. Accid Anal Prev 28:493–499

    Article  CAS  PubMed  Google Scholar 

  55. Ono K, Kaneoka K, Wittek A, Kajzer J (1997) Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low speed rear impacts. Society of Automotive Engineers Paper No. 973340

  56. Ordway NR, Seymour RJ, Donelson RG, Hojnowski LS, Edwards WT (1999) Cervical flexion, extension, protrusion, and retraction. A radiographic segmental analysis. Spine 24:240–247

    Article  CAS  PubMed  Google Scholar 

  57. Panjabi M (1979) Validation of mathematical models. J Biomech 12:238

    Article  CAS  PubMed  Google Scholar 

  58. Panjabi MM (1998) Cervical spine models for biomechanical research. Spine 23:2684–2700

    Article  CAS  PubMed  Google Scholar 

  59. Panjabi MM, Cholewicki J, Nibu K, Babat LB, Dvorak J (1998) Simulation of whiplash trauma using whole cervical spine specimens. Spine 23:17–24

    Article  CAS  PubMed  Google Scholar 

  60. Panjabi MM, Cholewicki J, Nibu K et al (1998) Mechanism of whiplash injury. Clin Biomech (Bristol, Avon) 13:239–249

    Google Scholar 

  61. Panjabi MM, Crisco JJ 3rd, Lydon C, Dvorak J (1998) The mechanical properties of human alar and transverse ligaments at slow and fast extension rates. Clin Biomech (Bristol, Avon) 13:112–120

    Google Scholar 

  62. Panjabi MM, Nibu K, Cholewicki J (1998) Whiplash injuries and the potential for mechanical instability. Eur Spine J 7:484–492

    Article  CAS  PubMed  Google Scholar 

  63. Panjabi MM, Miura T, Cripton PA et al (2001) Development of a system for in vitro neck muscle force replication in whole cervical spine experiments. Spine 26:2214–2219

    Article  CAS  PubMed  Google Scholar 

  64. Panjabi MM, Pearson AM, Ito S, Ivancic PC, Wang JL (2004) Cervical spine curvature during simulated whiplash. Clin Biomech (Bristol Avon) 19:1–9

    Google Scholar 

  65. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1009

    Article  CAS  PubMed  Google Scholar 

  66. Patwardhan AG, Havey RM, Ghanayem AJ et al (2000) Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine 25:1548–1554

    Article  CAS  PubMed  Google Scholar 

  67. Quint U, Wilke HJ, Loer F, Claes L (1998) Laminectomy and functional impairment of the lumbar spine: the importance of muscle forces in flexible and rigid instrumented stabilization—a biomechanical study in vitro. Eur Spine J 7:229–238

    Article  CAS  PubMed  Google Scholar 

  68. Quint U, Wilke HJ, Shirazi-Adl A et al (1998) Importance of the intersegmental trunk muscles for the stability of the lumbar spine. A biomechanical study in vitro. Spine 23:1937–1945

    Article  CAS  PubMed  Google Scholar 

  69. Richter M, Otte D, Pohlemann T, Krettek C, Blauth M (2000) Whiplash-type neck distortion in restrained car drivers: frequency, causes and long-term results. Eur Spine J 9:109–117

    Article  CAS  PubMed  Google Scholar 

  70. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:E557–E561

    Article  CAS  PubMed  Google Scholar 

  71. Scott MW, McConnell WE, Guzman HM et al (1993) Comparison of human and ATD head kinematics during low-speed rear-end impacts. Society of Automotive Engineers Paper No. 930094

  72. Scott S, Sanderson PL (2002) Whiplash: a biochemical study of muscle injury. Eur Spine J 11:389–392

    Article  CAS  PubMed  Google Scholar 

  73. Severy DM, Mattewson JH, Bechtol CO (1955) Controlled automobile rear-end collisions, an investigation of related engineering and medical phenomena. Can Serv Med J 11:727–759

    CAS  PubMed  Google Scholar 

  74. Stemper BD, Yoganandan N, Pintar FA (2002) Intervertebral rotations as a function of rear impact loading. Biomed Sci Instrum 38:227–231

    PubMed  Google Scholar 

  75. Sturzenegger M, Radanov BP, Di Stefano G (1995) The effect of accident mechanisms and initial findings on the long-term course of whiplash injury. J Neurol 242:443–449

    CAS  PubMed  Google Scholar 

  76. Svensson MY, Lovsund P, Haland Y, Larsson S (1993) The influence of seat-back and head-restraint properties on the head-neck motion during rear-impact. International Research Conference on the Biomechanics of Impacts. Eindhoven, The Netherlands

  77. Svensson MY, Bostrom O, Davidsson J et al (2000) Neck injuries in car collisions—a review covering a possible injury mechanism and the development of a new rear-impact dummy. Accid Anal Prev 32:167–175

    Article  CAS  PubMed  Google Scholar 

  78. Szabo TJ, Welcher JB (1996) Human subject kinematics and electromyographic activity during low speed rear impacts. Society of Automotive Engineers Paper No. 962432

  79. Szabo TJ, Welcher JB, Anderson RD et al (1994) Human occupant kinematic response to low speed rear-end impacts. Society of Automotive Engineers Paper No. 940532

  80. Taylor JR, Twomey LT (1993) Acute injuries to cervical joints. An autopsy study of neck sprain. Spine 18:1115–1122

    CAS  PubMed  Google Scholar 

  81. Uhrenholt L, Grunnet-Nilsson N, Hartvigsen J (2002) Cervical spine lesions after road traffic accidents: a systematic review. Spine 27:1934–1941

    Article  PubMed  Google Scholar 

  82. Vasavada AN, Li S, Delp SL (2001) Three-dimensional isometric strength of neck muscles in humans. Spine 26:1904–1909

    Article  CAS  PubMed  Google Scholar 

  83. Walker LB, Harris EH, Pontius UR (1973) Mass, volume, center of mass, and mass moment of inertia of head and neck of human body. Society of Automotive Engineers Paper No. 730985

  84. Welcher JB, Szabo TJ (2001) Relationships between seat properties and human subject kinematics in rear impact tests. Accid Anal Prev 33:289–304

    Article  CAS  PubMed  Google Scholar 

  85. West DH, Gough JP, Harper GTK (1993) Low speed rear-end collision testing using human subjects. Accident Reconstruction Journal:22–26

    Google Scholar 

  86. Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 20:192–198

    CAS  PubMed  Google Scholar 

  87. Yang KY, Zhu F, Luan F (1998) Development of a finite element model of the human neck. Society of Automotive Engineers Paper No. 983157

  88. Yoganandan N, Pintar F, Butler J et al (1989) Dynamic response of human cervical spine ligaments. Spine 14:1102–1110

    CAS  PubMed  Google Scholar 

  89. Yoganandan N, Cusick JF, Pintar FA, Rao RD (2001) Whiplash injury determination with conventional spine imaging and cryomicrotomy. Spine 26:2443–2448

    Article  CAS  PubMed  Google Scholar 

  90. Yoganandan N, Pintar FA, Cusick JF (2002) Biomechanical analyses of whiplash injuries using an experimental model. Accid Anal Prev 34:663–671

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by NIH Grant 1 R01 AR45452 1A2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manohar M. Panjabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivancic, P.C., Panjabi, M.M., Ito, S. et al. Biofidelic whole cervical spine model with muscle force replication for whiplash simulation. Eur Spine J 14, 346–355 (2005). https://doi.org/10.1007/s00586-004-0758-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-004-0758-5

Keywords

Navigation