Factors affecting the interface of cervical spine facet screws placed in the technique by Roy-Camille et al.


The objective of the study was to investigate the influence of bone cement, length of burr hole and bone density on pullout force and insertional screw torque of cervical spine facet screws. Both facets of 24 human cervical vertebrae were scanned for bone mineral density (BMD) and assigned to two groups for measuring of insertional screw torque and pullout strength. Maximal insertional screw torque was measured and removal of the screws was performed in displacement control (0.25 mm/s) without bone cement (PMMA), with 0.1 ml of PMMA and with the burr hole completely filled with PMMA. Screw torque was 59.1 N cm (±25.7 N cm), pullout force was 382.8 N (±140.5 N) without PMMA. Injection of 0.1 ml PMMA did not change significantly both screw torque (p=0.73) and pullout (p=0.129). Filling of the burr holes with PMMA increased significantly both screw torque (p<0.0001) and pullout force (p=0.028) when compared with injection of 0.1 ml of PMMA. A positive, moderate correlation was seen between BMD and screw torque before (r=0.501; p=0.097) and after filling with PMMA (r=0.514; p=0.088), BMD and pullout force before (r=0.441; p=0.152) and after complete filling with PMMA (r=0.673; p=0.047). The PMMA does increase both screw torque (p<0.0001) and pullout force (p=0.028) of facet screws significantly if the burr hole is filled with PMMA completely when compared with injection of 0.1 ml PMMA. Bone mineral density of the cervical facets moderately correlates with peak insertional torque and pullout force. This is true for a facet without PMMA and for a facet filled with PMMA. The length of the burr hole seems to be less important.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Do Koh Y, Lim TH, You JW, Eck J, An H (2001) Biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine 26:115–121

    PubMed  Google Scholar 

  2. 2.

    Errico T, Uhl R, Cooper P, Casar R, McHenry T (1992) Pullout strength comparison of two methods of orienting screw insertion in the lateral masses of the bovine cervical spine. J Spinal Disord 5:459–463

    CAS  PubMed  Google Scholar 

  3. 3.

    Fagerström T, Hedlund R, Bancel P, Robert R, Dupas B (2001) Laminar hook instrumentation in the cervical spine. An experimental study on the relation of hooks to the spinal cord. Eur Spine J 10:340–344

    PubMed  Google Scholar 

  4. 4.

    Hadra BE (1891) Wiring of the vertebrae as a means of immobilisation in fracture and Pott’s disease. Med Times Register 22:423

    Google Scholar 

  5. 5.

    Heller J, Carlson G, Abitol J, Garfin S (1991) Anatomic comparison of the Roy-Camille and Magerl techniques for screw placement in the lower cervical spine. Spine 16 (Suppl):S552–S557

    CAS  PubMed  Google Scholar 

  6. 6.

    Heller J, Silcox H, Sutterlin C (1995) Complications of posterior cervical plating. Spine 20:2442–2448

    CAS  PubMed  Google Scholar 

  7. 7.

    Heller J, Estes B, Zaouli M, Flier R, Diop A (1996) Biomechanical study of screws in the lateral masses: variables affecting pullout resistance. J Bone Joint Surg (Am) 78:1315–1321

    Google Scholar 

  8. 8.

    Jones El, Heller JG, Silcox DH, Hutton W (1997) Cervical pedicle screws versus lateral mass screws: anatomic feasibility and biomechanical comparison. Spine 22:977–982

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7:132–141

    CAS  PubMed  Google Scholar 

  10. 10.

    Kowalski JM, Steven Cl, Hutton WC, Heller JG (2000) Cervical spine pedicle screws: a biomechanical comparison of two insertion techniques. Spine 25:2865–2867

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Lill CA, Schlegel U, Wahl D, Schneider E (2000) Comparison of the in vitro holding strength of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180 degrees. J Spinal Disord 13:259–266

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Maloney WJ, Schmalzried T, Harris WH (2002) Analysis of long-term cemented total hip arthroplasty retrievals. Clin Orthop 405:70–78

    PubMed  Google Scholar 

  13. 13.

    Mihara H, Cheng BC, David SM, Ohnari K, Zdeblick TA (2001) Biomechanical comparison of posterior cervical fixation. Spine 26:1662–1667

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Montesano P, Jauch E, Anderson P, Benson D, Hanson P (1991) Biomechanics of cervical spine internal fixation. Spine 16 (Suppl):S10–S16

    CAS  PubMed  Google Scholar 

  15. 15.

    Montesano P, Juach E, Jonsson H (1992) Anatomic and biomechanical study of posterior cervical spine plate arthrodesis: an evaluation of two different techniques of screw placement. J Spinal Disord 5:301–305

    CAS  PubMed  Google Scholar 

  16. 16.

    Oxland TR, Lund T, Jost B, Cripton P, Lippuner K, Jaeger P, Nolte LP (1996) The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study. Spine 21:2558–2569

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Pfeiffer M, Gilbertson LG, Goel VK, Griss P, Keller JC, Ryken TC, Hoffmann HE (1996). Effect of specimen fixation method on pullout tests of pedicle screws. Spine 21:1037–1044

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Pitzen T, Wilke HJ, Caspar W, Claes L, Steudel WI (1999) Biomechanical evaluation of a new monocortical screw for anterior cervical fusion and plating by a combined biomechanical and clinical study. Eur Spine J 8:382–387

    CAS  PubMed  Google Scholar 

  19. 19.

    Pitzen T, Barbier D, Tintinger F, Steudel WI, Strowitzki M (2002) Screw fixation to the posterior cortical shell does not influence peak torque and pullout in anterior cervical plating. Eur Spine J 11:494–499

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Richter M, Wilke HJ, Kluger P, Neller S, Claes LE, Puhl W (2000) Biomechanical evaluation of a new modular rod–screw implant system for posterior instrumentation of the occipito-cervical spine: in-vitro comparison with two established implant systems. Eur Spine J 9:417–425

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Rogers WA (1942) Treatment of fracture–dislocation of the cervical spine. J Bone Joint Surg 24:245–258

    Google Scholar 

  22. 22.

    Roy-Camille R, Saillant G, Mazel JC (1989) Internal fixation of the unstable cervical spine by a posterior osteosynthesis with plates and screws. In: The Cervical Spine Research Society (eds) The cervical spine. Lippincott, Philadelphia, pp 390–412

  23. 23.

    Sarzier JS, Evans AJ, Cahill DW (2002) Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg 96:309–312

    PubMed  Google Scholar 

  24. 24.

    Schultheiss M, Wilke HJ, Claes L, Kinzl L, Hartwig E (2002) MACS-TL polyaxial screw XL. A new concept for increasing stability of ventral spondylodesis in the presence of dorsal injuries. Orthopäde 31:397–401

    Google Scholar 

  25. 25.

    Seybold E, Baker J, Criscitiello A, Ordway N, Park C, Connolly PJ (1999) Characteristics of unicortical and bicortical lateral mass screws in the cervical spine. Spine 24:2397–2403

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Ulrich C, Arand M, Nothwang J (2001) Internal fixation on the lower cervical spine: biomechanics and clinical practice of procedures and implants. Eur Spine J 10:88–100

    CAS  PubMed  Google Scholar 

  27. 27.

    Strempel A von, Kuhle J, Plitz W (1994) Stability of pedicle screws: maximum pullout force with reference to bone density. Z Orthop Ihre Grenzgeb 132:82–86

    PubMed  Google Scholar 

  28. 28.

    Weise K, Eingartner C, Winter E (2003) Cemented versus uncemented hip replacement: rational decision making using the BiCONTACT total hip system. Zentralbl Chir 128:46–52

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Wellmann B, Follett K, Traynelis V (1998) Complications of posterior articular mass plate fixation of the subaxial cervical spine in 43 consecutive patients. Spine 23:193–200

    Article  PubMed  Google Scholar 

  30. 30.

    Wittenberg RH, Lee KS, Shea M, White AA III, Hayes WC (1993) Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop 296:278–287

    PubMed  Google Scholar 

Download references


This study was supported by Aesculap (Tuttlingen, Germany). The authors thank T. Grupp, T. Barthelmes and A. Pfaff for assistance.

Author information



Corresponding author

Correspondence to T. R. Pitzen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pitzen, T.R., Zenner, S., Barbier, D. et al. Factors affecting the interface of cervical spine facet screws placed in the technique by Roy-Camille et al.. Eur Spine J 13, 524–529 (2004). https://doi.org/10.1007/s00586-004-0685-5

Download citation


  • Cervical spine
  • Biomechanics
  • Bone cement
  • Bone density
  • Screws