Sagittal range of motion after a spinal fracture: does ROM correlate with functional outcome?

Abstract

Literature regarding the effect of a spinal fracture and its treatment in terms of resulting spinal range of motion (ROM) is scarce. However, there is need for data regarding sagittal spinal ROM, since many patients who sustain a spinal fracture are concerned about the back mobility they will have after treatment. In addition, the relationship between ROM and impairment is not clear. The literature gives conflicting results. To study spinal ROM after a spinal fracture, we measured thoracolumbar ROM in operatively and non-operatively treated patients (n=76, average 3.7 years follow-up) as well as controls (n=41). In order to study the relation between ROM and subjective back complaints, we calculated the correlation between thoracolumbar ROM and scores derived from the VAS spine score and RMDQ. To assess impairment after a spinal fracture, we compared RMDQ and VAS scores between operatively and non-operatively treated patients and healthy controls. Operatively treated patients were found to have lower thoracolumbar ROM than controls (56.7° vs 70.0°, respectively; p<0.01). There was no difference between operatively treated and non-operatively treated patients (56.7° vs 62.7°, respectively); nor was a difference found between non-operatively treated patients and controls. Correlation between ROM and subjective impairment was very weak and only significant for ROM and RMDQ scores in the whole study group (rho= −0.25; p<0.01). Patients were more impaired than controls, there was no difference between operatively and non-operatively treated patients (VAS score 76.3 vs 72.6; RMDQ score 4.5 vs 4.4, respectively). We conclude that patients treated operatively for a thoracolumbar spinal fracture have a lower thoracolumbar ROM than controls. Spinal ROM, however, does not influence impairment. A spinal fracture results in impairment, no matter what therapy is chosen.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Axelsson P, Johnsson R, Stromqvist B, Arvidsson M, Herrlin K (1994) Posterolateral lumbar fusion. Outcome of 71 consecutive operations after 4 (2–7) years. Acta Orthop Scand 65:309–314

    CAS  PubMed  Google Scholar 

  2. 2.

    Blauth M, Bastian L, Jeanneret B, Knop C, Moulin P, Müller-Vahl H, Schmidt U, Schratt HE, Wippermann B (1998) Wirbelsäule. In: Tscherne H, Blauth M (eds) Tscherne Unfallchirurgie, vol 3. Springer, Berlin Heidelberg New York, pp 314–320 and pp 333–338

  3. 3.

    Cox ME, Asselin S, Gracovetsky SA, Richards MP, Newman NM, Karakusevic V, Zhong L, Fogel JN (2000) Relationship between functional evaluation measures and self-assessment in nonacute low back pain. Spine 25:1817–1826

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Daniaux H (1982) Technik und erste Ergebnisse der transpedikulaeren Spongiosaplastik bei Kompressionsbruechen im Lendenwirbelsaulenbereich. Acta Chir Austr 43 [Suppl]:79

  5. 5.

    Dekutoski MB, Conlan ES, Salciccioli GG (1993) Spinal mobility and deformity after Harrington rod stabilization and limited arthrodesis of thoracolumbar fractures. J Bone Joint Surg Am 75:168–176

    CAS  PubMed  Google Scholar 

  6. 6.

    Dick W (1987) The “fixateur interne” as a versatile implant for spine surgery. Spine 12:882–900

    PubMed  Google Scholar 

  7. 7.

    Dick W, Kluger P, Magerl F, Woersdorfer O, Zach G (1985) A new device for internal fixation of thoracolumbar and lumbar spine fractures: the “fixateur interne.” Paraplegia 23:225–232

    Google Scholar 

  8. 8.

    Dodd CA, Fergusson CM, Pearcy MJ, Houghton GR (1986) Vertebral motion measured using biplanar radiography before and after Harrington rod removal for unstable thoracolumbar fractures of the spine. Spine 11:452–455

    CAS  PubMed  Google Scholar 

  9. 9.

    Junge A, Gotzen L, von-Garrel T, Ziring E, Giannadakis K (1997) Die monosegmentale Fixateur interne—Instrumentation und Fusion in der Behandlung von Frakturen der thorakolumbalen Wirbelsäule. Indikation, Technik und Ergebnisse. Unfallchirurg 100:880–887

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Knop C, Fabian HF, Bastian L, Blauth M (2001) Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine 26:88–99

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Knop C, Oeser M, Bastian L, Lange U, Zdichavsky M, Blauth M (2001) Entwicklung und Validierung des VAS-Wirbelsäulenscores. [Development and validation of the Visual Analogue Scale (VAS) Spine Score]. Unfallchirurg 104:488–497

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Kraemer WJ, Schemitsch EH, Lever J, McBroom RJ, McKee MD, Waddell JP (1996) Functional outcome of thoracolumbar burst fractures without neurological deficit. J Orthop Trauma 10:541–544

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Leclaire R, Blier F, Fortin L, Proulx R (1997) A cross-sectional study comparing the Oswestry and Roland-Morris Functional Disability scales in two populations of patients with low back pain of different levels of severity. Spine 22:68–71

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Leferink VJM, Zimmerman KW, Veldhuis EFM, Vergert EM, Duis HJ (2001) Thoracolumbar spinal fractures: radiological results of transpedicular fixation combined with transpedicular cancellous bone graft and posterior fusion in 183 patients. Eur Spine J 10:517–523

    CAS  PubMed  Google Scholar 

  15. 15.

    Leferink VJM, Nijboer JMM, Zimmerman KW, Veldhuis EFM, Vergert EM, Duis HJ (2002) Thoracolumbar spinal fractures: segmental range of motion after dorsal spondylodesis in 82 patients: a prospective study. Eur Spine J 11:2–7

    CAS  PubMed  Google Scholar 

  16. 16.

    Leferink VJM, Keizer HJE, Oosterhuis JK, van der Sluis CK, Duis HJ (2003) Functional outcome in patients with thoracolumbar burst fractures treated with dorsal instrumentation and transpedicular cancellous bone grafting. Eur Spine J 12:261–267

    CAS  PubMed  Google Scholar 

  17. 17.

    Lindsey RW, Dick W, Nunchuck S, Zach G (1993) Residual intersegmental spinal mobility following limited pedicle fixation of thoracolumbar spine fractures with the fixateur interne. Spine 18:474–478

    CAS  PubMed  Google Scholar 

  18. 18.

    Louis R (1983) Surgery of the spine: surgical anatomy and operative approaches. Springer, Berlin Heidelberg New York, p 70

    Google Scholar 

  19. 19.

    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201

    PubMed  Google Scholar 

  20. 20.

    Mayer TG, Tencer AF, Kristoferson S, Mooney V (1984) Use of noninvasive techniques for quantification of spinal range-of-motion in normal subjects and chronic low-back dysfunction patients. Spine 9:588–595

    CAS  PubMed  Google Scholar 

  21. 21.

    Mellin G (1986) Measurement of thoracolumbar posture and mobility with a Myrin inclinometer. Spine 11:759–762

    CAS  PubMed  Google Scholar 

  22. 22.

    Miller MH, Lee P, Smythe HA, Goldsmith CH (1984) Measurements of spinal mobility in the sagittal plane: new skin contraction technique compared with established methods. J Rheumatol 11:507–511

    CAS  PubMed  Google Scholar 

  23. 23.

    Nattrass CL, Nitschke JE, Disler PB, Chou MJ, Ooi KT (1999) Lumbar spine range of motion as a measure of physical and functional impairment: an investigation of validity. Clin Rehabil 13:211–218

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Poitras S, Loisel P, Prince F, Lemaire J (2000) Disability measurement in persons with back pain: a validity study of spinal range of motion and velocity. Arch Phys Med Rehabil 81:1394–1400

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Rohlmann A, Neller S, Bergmann G, Graichen F, Claes L, Wilke HJ (2001) Effect of an internal fixator and a bone graft on intersegmental spinal motion and intradiscal pressure in the adjacent regions. Eur Spine J 10:301–308

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Roland M, Fairbank J (2000) The Roland-Morris Disability Questionnaire and the Oswestry Disability Questionnaire. Spine 25:3115–3124

    CAS  PubMed  Google Scholar 

  27. 27.

    Roland M, Morris R (1983) A study of the natural history of back pain. I. Development of a reliable and sensitive measure of disability in low-back pain. Spine 8:141–144

    CAS  PubMed  Google Scholar 

  28. 28.

    Roland M, Morris R (1983) A study of the natural history of low-back pain. II. Development of guidelines for trials of treatment in primary care. Spine 8:145–150

    CAS  PubMed  Google Scholar 

  29. 29.

    Schober P (1937) Lendenwirbelsäule und Kreuzschmerzen. Munch Med Wochenschr 84:336–338

    Google Scholar 

  30. 30.

    Winter RB, Carr P, Mattson HL (1997) A study of functional spinal motion in women after instrumentation and fusion for deformity or trauma. Spine 22:1760—1764

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. B. Post.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Post, R.B., Leferink, V.J.M. Sagittal range of motion after a spinal fracture: does ROM correlate with functional outcome?. Eur Spine J 13, 489–494 (2004). https://doi.org/10.1007/s00586-003-0669-x

Download citation

Keywords

  • Spinal fractures
  • Thoracolumbar ROM
  • Functional outcome