Skip to main content
Log in

Effects of neutral wind on the electron temperature at a height of 600 km in the low latitude region

  • Published:
Annales Geophysicae

Abstract

Electron temperature observed by the Hinotori satellite with the low inclination at the height of \sim600 km was studied in terms of local time, season, latitude, magnetic declination and solar flux intensity during a 16-month period from 1981 to 1982. The electron temperatures show steep rise in the early morning (well known as morning overshoot), decrease after that and again increase at \sim18 hours (hereafter named as evening overshoot). Generally the morning overshoot becomes more enhanced in the winter hemisphere and for higher solar fluxes. The evening overshoot becomes more pronounced in the mid-latitude in all seasons and more enhanced in the winter hemisphere in the same way as the morning overshoot. A difference is seen between 210°-285° and 285°-360° longitudes where magnetic declination is different. The longitudinal dependence of electron temperature indicates that the neutral wind also contributes to the thermal structure in the low latitude ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Watanabe, S., Oyama, KI. Effects of neutral wind on the electron temperature at a height of 600 km in the low latitude region. Annales Geophysicae 14, 290–296 (1996). https://doi.org/10.1007/s00585-996-0290-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00585-996-0290-5

Keywords

Navigation