Skip to main content

Advertisement

Log in

Nano-chitosan/bovine lactoperoxidase and lactoferrin formulation modulates the hepatic deterioration induced by 7,12-dimethylbenz[a]anthracene

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Lactoperoxidase (LPO) and lactoferrin (LF) are promising bovine proteins that can be nano-formulated with chitosan nanoparticles giving a potent pharmaceutical product. This study aimed to evaluate the therapeutic potential of a prepared nano-combination composed of LPO and LF loaded on chitosan nanoparticles (LPO + LF/CNPs) against oxidative damage in the liver of rats exposed to 7,12-dimethylbenz[a]anthracene (DMBA). Twenty-four male Wistar albino rats (4 months old) were divided into three equal groups and treated orally as follow: (1) rats were given saline and served as control, (2) rats received a single dose (20 mg/kg) of DMBA dissolved in soy oil, and (3) rats intoxicated with a single dose (20 mg/kg) of DMBA, 56 days prior to their oral treatment with the nano-combination (50 mg /kg/day) for consecutive 30 days. Then, blood and liver samples were collected for biochemical determinations. Histological and immunohistochemistry examinations of liver tissue were also performed. TEM image of LPO + LF/CNPs showed semi-rounded shape particles with an average size of 336.8 nm and 47.30 mV zeta potential. DMBA intoxication increased serum aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), and gamma-glutamyl transferase (GGT) activities. DMBA increased also the values of hepatic malondialdehyde (MDA) and nitric oxide (NO), serum nuclear factor κB (NF-κB), caspase-3, interleukin-1beta (IL-1β), and tumor necrosis factor-alpha (TNF- α), and the tumor markers alpha fetoprotein (AFP) and carcino embryonic antigen (CEA), whereas hepatic glutathione (GSH) content and the activities of hepatic glutathione peroxidase (GPx), catalase (CAT), and glutathione–S-transferase (GST) were significantly decreased. In addition, serum triglycerides, total, and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated with a significant decrease in high-density lipoprotein cholesterol (HDL-C) and albumin levels. Moreover, DMBA induced severe histological alterations in the liver tissue and the immunohistochemistry investigation revealed that DMBA exposure upregulated the hepatic protein expression of caspase 3. The post-treatment with LPO + LF/CNPs ameliorated most of the above parameters and improved the histological picture of the liver. The present study indicated that LPO + LF/CNPs have a potent therapeutic potential against DMBA hepatotoxicity through the suppression of oxidative stress and inflammation which leads to liver damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available in the main manuscript.

References

  • Abdelmeguid NE, Khalil MI, Badr NS, Alkhuriji AF, El-Gerbed MS, Sultan AS (2021) Ameliorative effects of colostrum against DMBA hepatotoxicity in rats. Saudi J Biol Sci 28:2254–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Wahhab KG, Ashry M, El Fakharany EM, Gomaa HF (2022) Modulatory efficiency of LP/LF nano-combination on neurochemical and behavioural retardations in the brain of induced-epileptic rats. Pak J Biol Sci 25(10):929–937

    Article  CAS  PubMed  Google Scholar 

  • Abu-Serie MM, El-Fakharany EM (2017) Efficiency of novel nano-combinations of bovine milk proteins (LPO and LF) for combating different human cancer cell lines. Sci Rep. https://doi.org/10.1038/s41598-017-16962-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK (2021) Chitosan nanoparticles at the biological interface: Implications for drug delivery. Pharmaceutics 13(10). https://doi.org/10.3390/pharmaceutics13101686

  • Almahdy O, El-Fakharany EM, Ehab ED, Ng TB, Redwan EM (2011) Examination of the activity of camel milk casein against hepatitis C virus (genotype-4a) and its apoptotic potential in hepatoma and hela cell lines. Hepat Mon 9:724–30

    Article  Google Scholar 

  • Angeline Kirubha SP, Anburajan M, Venkataraman B, Akila R, Sharath D, Raj B (2012) Evaluation of mammary cancer in 7,12-dimethylbenz(a)anthracene-induced Wister rats by asymmetrical temperature distribution analysis using thermography: a comparison with serum CEA levels and histopathology. J Biomed Biotechnol 2012:786417. https://doi.org/10.1155/2012/786417

  • Anitha A, Deepagan VG, Rani VD, Menon D, Nair SV, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym 84(3):1158–1164

    Article  CAS  Google Scholar 

  • Arjun Kalra, Ekrem Yetiskul, Chase J. Wehrle, Faiz Tuma (2022) Physiology, liver. https://www.ncbi.nlm.nih.gov › books › NBK535438

  • Arora R, Bhushan S, Kumar R, Mannan R, Kaur P, Singh AP, Singh B, Vig AP, Sharma D, Arora S (2014) Hepatic dysfunction induced by 7, 12-dimethylbenz(α)anthracene and its obviation with erucin using enzymatic and histological changes as indicators. PLoS One 9(11):e112614. https://doi.org/10.1371/journal.pone.0112614. eCollection 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvind A (2019) Lipid and lipoprotein metabolism in liver disease. https://www.ncbi.nlm.nih.gov › books › NBK326742

  • Atasever A, Ozdemir H, Gulcin I, Kufrevioglu OI (2013) One-step purification of LPO from bovine milk by affinity chromatography. Food Chem 136(2):864–70

    Article  CAS  PubMed  Google Scholar 

  • Batcioglu K, Kargin FO, Satilmis B, Gul M, Uyumlu AB, Buyuktuncel E, Yigitcan B, Gunal S, Genc MF (2012) Comparison of in vivo chemoprotective and in vitro antimicrobial activity of different garlic (Allium sativum) preparations. J Med Plant Res 6(14):2885–2894

    Google Scholar 

  • Bonferoni MC, Gavini E, Rassu G, Maestri M, Giunchedi P (2020) Chitosan nanoparticles for therapy and theranostics of hepatocellular carcinoma (HCC) and liver-targeting. Nanomaterials (Basel) 10(5):870. https://doi.org/10.3390/nano10050870

    Article  CAS  PubMed  Google Scholar 

  • Buters J, Quintanilla-Martinez L, Schober W, Soballa VJ, Hintermair J, Wolff T, Gonzalez FJ, Greim H (2003) CYP1B1 determines susceptibility to low doses of 7,12-dimethylbenz[a]anthracene induced ovarian cancers in mice: correlation of CYP1B1-mediated DNA adducts with carcinogenicity. Carcinogenesis 24(2):327–334

    Article  CAS  PubMed  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Article  Google Scholar 

  • Castro Marín A, Colangelo D, Lambri D, Riponi C, Chinnici F (2021) Relevance and perspectives of the use of chitosan in winemaking: a review. Crit Rev Food Sci Nutr 61(20):3450–3464

    Article  PubMed  Google Scholar 

  • Chen W, Li F, Tang Y, Yang S, Li J, Yuan Z, Liu Y, Zhou X, Liu C, Zhang X (2017) Stepwise PH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int J Nanomed 12:4241–4256

    Article  CAS  Google Scholar 

  • Chen G, Svirskis D, Lu W, Ying M, Huang Y, Wen J (2018) N-Trimethyl Chitosan nanoparticles and CSKSSDYQC peptide: N-trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J Control Release 277:142–153

    Article  CAS  PubMed  Google Scholar 

  • Dosumu OA, Rotimi SO, Adeleye OO, Akamo AJ, Osinuga KT, Taiwo OA, Omotosho OO, Sani LO (2021) Vitamin K protects against 7,12-dimethylbenz(A)anthracene induced hepatotoxicity in Wistar rats. Environ Toxicol 36(3):362–373

    Article  CAS  PubMed  Google Scholar 

  • El-Fakharany EM, Ashry M, Abd-Elaleem AEH, Romeih MH, Morsy FA, Shaban RA, Abdel-Wahhab KG (2022) Therapeutic efficacy of nano-formulation of LPO and LF via promoting immunomodulatory and apoptotic effects. Int J Biol Macromol 220:43–55

    Article  CAS  PubMed  Google Scholar 

  • El-Fakharany EM (2021) Nanoformulation approach for improved stability and efficiency of LPO. Prep Biochem Biotechnol 51(7):629–641

    Article  CAS  PubMed  Google Scholar 

  • El-Fakharany EM, Uversky VN, Redwan EM (2017) Comparative analysis of the antiviral activity of camel, bovine, and human LPOs against herpes simplex virus type 1. Appl Biochem Biotechnol 182:294–310

    Article  CAS  PubMed  Google Scholar 

  • EL-Fakharany EM, Abd-Elhamid AI, El-Deeb NM (2019) Preparation and characterization of novel nano-combination of bovine LPO with dye decolorizing and anti-bacterial activity. Sci Rep 9:2. https://doi.org/10.1038/s41598-019-44961-2

  • El-Kholy W, Serag H, Zakaria A, El-Metwaly A (2013) The potency of some natural products on DMBA induced hepatotoxicity in rats. Egypt J Hosp Med 53:1036–1048

    Article  Google Scholar 

  • Elkeiy MM, Khamis AA, El-Gamal MM, Abo Gazia MM, Zalat ZA, El-Magd MA (2020) Chitosan nanoparticles from Artemia salina inhibit progression of hepatocellular carcinoma in vitro and in vivo. Environ Sci Pollut Res 27(16):19016–19028

    Article  CAS  Google Scholar 

  • Gadelmawla MH, Alazzouni AS, Farag AH, Gabri MS, Hassan BN (2022) Enhanced effects of ferulic acid against the harmful side effects of chemotherapy in colon cancer: docking and in vivo study. The Journal of Basic and Applied Zoology 83:1–11

    Article  Google Scholar 

  • Garry K, Azenes R, Latvia R (2015) The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 13:2158–2182

    Article  Google Scholar 

  • Ha KT, Yoon SJ, Choi DY, Kim DW, Kim JK, Kim CH (2005) Protective effect of Lycium chinense fruit on carbon tetrachloride induced hepatotoxicity. J Ethnopharm 96:529–535

    Article  Google Scholar 

  • Heidel SM, MacWilliams PS, Baird WM, Dashwood WM, Buters JT, Gonzalez FJ, Larsen MC, Czuprynski CJ, Jefcoate CR (2000) Cytochrome P4501B1 mediates induction of bone marrow cytotoxicity and preleukemia cells in mice treated with 7,12-dimethylbenz[a]anthracene. Cancer Res 60(13):3454–3460

    CAS  PubMed  Google Scholar 

  • Jessica A. Gibbons, Kanwar RK, Kanwar JR (2011) LF and cancer in different cancer models. Front Biosci 3, 1080–1088

  • Kaur R, Garg T, Rath G, Goyal AK (2014) Advanced aerosol delivery devices for potential cure of acute and chronic diseases. Crit Rev Ther Drug Carrier Syst 31:495–530

    Article  PubMed  Google Scholar 

  • Kim YJ, Park JE, Chung JY, Kim JE, Lee SG, Lee SJ, Yu WJ, Kim HY, Kim HJ, Koh H, Bae HR, Yoo YH, Kim JM (2022) Constitutive expression of cytochrome P450 1B1 endows testicular Leydig cells with susceptibility to 7,12-dimethylbenzanthracene-induced cell death. J Toxicol Sci 47(8):317–326

    Article  CAS  PubMed  Google Scholar 

  • Khan MZ, Xiao J, Ma Y, Ma J, Liu S, Khan A, Khan JM, Cao Z (2021) Research development on anti-microbial and antioxidant properties of camel milk and its role as an anti-cancer and anti-hepatitis agent. Antioxidants 10(5):788. https://doi.org/10.3390/antiox10050788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khyade VB (2017) Influence of Sibinin on DMBA-induced hepatotoxicity and free radical damage in Norwegian rat, Rattus norvegicus. Int J Curr Microbiol Appl Sci 6(1):324–338

    Article  CAS  Google Scholar 

  • Kumar R, Kaur R, Singh AP, Arora S (2014) Diminution of hepatic response to 7, 12-dimethylbenz(alpha)anthracene by ethyl acetate fraction of Acacia catechu Willd. through modulation of xenobiotic and anti-oxidative enzymes in rats. PLoS One 9(2):e9008383. https://doi.org/10.1371/journal. pone.0090083

    Article  Google Scholar 

  • Lee HJ, Lombardi A, Stefan M, Li CW, Inabnet WB III, Owen RP, Concepcion E, Tomer Y (2017) CD40 signaling in graves’ disease is mediated through canonical and noncanonical thyroidal nuclear factor κB activation. Endocrinology 158:410–418

    Article  CAS  PubMed  Google Scholar 

  • Li D-M, Yun-Xuan Wu, Zhi-Qiang Hu, Wang T-C, Zhang L-L, Zhou Y, Tong X, Jia-Ying Xu, Qin L-Q (2022) Lactoferrin prevents chronic alcoholic injury by regulating redox balance and lipid metabolism in female C57BL/6J Mice. Antioxidants (basel) 11(8):1508. https://doi.org/10.3390/antiox11081508

    Article  CAS  PubMed  Google Scholar 

  • Li D, He Q, Yang H, Du Y, Yu K, Yang J, Tong X, Guo Y, Xu J, Qin L (2021) Daily dose of bovine LF prevents ethanol-induced liver injury and death in male mice by regulating hepatic alcohol metabolism and modulating gut microbiota. Mol Nutr Food Res 65(18):e2100253. https://doi.org/10.1002/mnfr.202100253

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Qiao B, Kexiao Yu, Cao J, Zhou H, Jiang Q, Zhong Y, Cao Y, Wang Z, Zheng Y (2022) Mitochondrial glutathione depletion nanoshuttles for oxygen-irrelevant free radicals generation: a cascaded hierarchical targeting and theranostic strategy against hypoxic tumor. ACS Appl Mater Interfaces 14(11):13038–13055

    Article  CAS  PubMed  Google Scholar 

  • Liao S, Shi D, Clemons-Chevis CL, Guo S, Su R, Qiang P, Tang Z (2014) Protective role of selenium on aflatoxin b1-induced hepatic dysfunction and apoptosis of liver in ducklings. Biol Trace Elem Res 162(1–3):296–301

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Hsu YF, Lin TC, Hsu FL, Hsu HY (1998) Antioxidant and hepatoprotective activity of punicalagin and punicalin on carbon tetrachloride-induced liver damage in rats. J Pharm Pharmacol 50:789–794

    Article  CAS  PubMed  Google Scholar 

  • Liu X, He Y, Li F, Huang Q, Kato TA, Hall RP, Li CY (2015) Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell 58(2):284–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P (2019) Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev. https://doi.org/10.1155/2019/3150145. eCollection 2019

  • Mani G, Arumugun M, Maril A, Devaki T (2018) Naringin attenuates DMBA induced mammary carcinogenesis in rats via regulating the oxidative stress and antioxidant status. J Chem Pharmacol Res 10(7):44–54

    CAS  Google Scholar 

  • Mansoori GA (2017) An introduction to nanoscience and nanotechnology. Nanosci Plant-Soil Sys Soil Biol 48:3–20

    Article  CAS  Google Scholar 

  • Min QQ, Qin LQ, Sun ZZ, Zuo WT, Zhao L, Xu JY (2018) Effects of metformin combined with LF on lipid accumulation and metabolism in mice fed with high-fat diet. Nutrients 10(11):1628. https://doi.org/10.3390/nu10111628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata M, Furukawa M, Takahashi K, Gonzalez FJ, Yamazoe Y (2001) Mechanism of 7, 12-dimethylbenz[a]anthracene-induced immunotoxicity: role of metabolic activation at the target organ. Jpn J Pharmacol 86(3):302–309

    Article  CAS  PubMed  Google Scholar 

  • Morana O, Wood W, Gregory CD (2022) The apoptosis paradox in cancer. Int J Mol Sci 23(3):1328. https://doi.org/10.3390/ijms23031328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita S, Ono T, Fujisaki C, Ishihara Y, Murakoshi M, Kato H, Hosokawa M, Miyashita K, Sugiyama K, Nishino H (2013) Bovine LF reduces visceral fat and liver triglycerides in ICR mice. J Oleo Sci 62(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Muqbil I, Fatima S, Azmi AS, Alsharidah AAS, Khan SA, Aljaser F, Banu N (2020) Restraint stress abates the antioxidant potential of melatonin on dimethyl benz (a) anthracene (DMBA) induced carcinogenesis. Med Oncol 37:96. https://doi.org/10.1007/s12032-020-01422-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430

    Article  CAS  Google Scholar 

  • Nandhakumar R, Salini K, Niranjali Devaraj S (2012) Morin augments anticarcinogenic and antiproliferative efficacy against 7,12-dimethylbenz(a)-anthracene induced experimental mammary carcinogenesis. Mol Cell Biochem 364:79–92

    Article  CAS  PubMed  Google Scholar 

  • Narmuratova Z, Hentati F, Girardet JM, Narmuratov M, Cakir-Kiefer C (2022) Equine lactoferrin: antioxidant properties related to divalent metal chelation. LWT - Food Sci Technol 161:113426. https://doi.org/10.1016/j.lwt.2022.113426

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z (2019) An introduction to nanotechnology. Interface Sci Tech 28:1–27

    Article  CAS  Google Scholar 

  • Nel AE, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006

    Article  CAS  Google Scholar 

  • Paliwal R, Sharma V, Pracheta I, Sharma S, Yadav S, Sharma SH (2011) Antinephrotoxic effect of administration of Moringa oleifera Lam in amelioration of DMBA-induced renal carcinogenesis in Swiss albino mice. Bio Med 3:27–35

    Google Scholar 

  • Pilipenko I, Korzhikov-Vlakh V, Sharoyko V, Zhang N, Schäfer-Korting M, Rühl E, Zoschke C, Tennikova T (2019) PH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics. https://doi.org/10.3390/pharmaceutics11070317

    Article  PubMed  PubMed Central  Google Scholar 

  • Putra WE, Rifa’I M (2019) Immunomodulatory activities of Sambucus javanica extracts in DMBA-exposed BALB/c mouse. Adv Pharm Bull 9(4):619–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M, Mirzaei H (2021) Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117108. Epub 20 Sep 2020

  • Rohilla R, Garg T, Goyal AK, Rath G (2016) Herbal and polymeric approaches for liver-targeting drug delivery: novel strategies and their significance. Drug Deliv 23(5):1645–61

    CAS  PubMed  Google Scholar 

  • Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron- induced lipid peroxidation of rat liver mi- crosomes. Steroids 59(6):383–388

    Article  CAS  PubMed  Google Scholar 

  • Sheikh IA, Beg MA, Yasir M (2017) Molecular interactions of carcinogenic aromatic amines, 4-aminobiphenyl and 4,4′-diaminobiphenyl, with lactoperoxidase — insight to breast cancer. Anticancer Res 37(11):6245–6249

    CAS  PubMed  Google Scholar 

  • Shaheen S, Arafah MM, Alshanwani AR, Fadda LM, Alhusaini AM, Ali HM, Hasan IH, Hagar H, Alharbi FM, AlHarthii A (2021) Chitosan nanoparticles as a promising candidate for liver injury induced by 2-nitropropane: implications pathways of P53, iNOS, VEGF, PCNA, and CD68. Sci Prog 104(2):1–19

    Article  Google Scholar 

  • Steel RG, Torrie GH (1960) Principles and procedures of statistics and biometrical approach, 2nd edn. McGraw-Hill Book Co., New York, Tronto and London, pp 71–117

    Google Scholar 

  • Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s theory and practice of histological techniques E-Book. Elsevier health sciences

  • Tacke F, Luedde T, Trautwein C (2009) Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 36:4–12

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Timilsena YP, Blanch E, Adhikari B (2019) LF: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 59(4):580–596

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Potter JJ, Rennie-Tankersley L, Novitskiy G, Sipes J, Mezey E (2007) Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice. Biochem Biophys Acta Mol Basis Dis 1772:66–71

    CAS  Google Scholar 

  • Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765–774

    CAS  Google Scholar 

  • Wang L, He C (2022) Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.967193. eCollection

  • Xu R, Ma L, Chen T, Wang J (2022) Sophorolipid suppresses LPS-induced inflammation in RAW264.7 cells through the NF-κB signaling pathway. Molecules 27(15):5037. https://doi.org/10.3390/molecules27155037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Li D, Chen J, Li YH, Zhang Z, Hidayat K, Wan Z, Xu JY, Qin LQ (2022) Lactoferrin improves hepatic insulin resistance and pancreatic dysfunction in high-fat diet and streptozotocin-induced diabetic mice. Nutr Res 103:47–58

    Article  CAS  PubMed  Google Scholar 

  • Yahya SMM, Shalaby RH, Mannaa FA, Mohamed NR, Elwakeel SHB, Abdel-Wahhab KG (2020) Hypolipidemic action of chitosan correlates with its antioxidant effect against thioacetamide toxicity in male albino rats. European J Biomed Pharm Sci 7(10):69–75

    CAS  Google Scholar 

  • Yahya SMM, Shalaby RH, Mannaa FA, Wahhab KGA, Mohamed NR, Shabana ME, Elwakeel SHB (2021) Hepatoprotective effects of chitosan on thioacetamide-induced liver toxicity in male albino rats. Biointerface Research in Applied Chemistry 11(6):14490–14505

    Article  CAS  Google Scholar 

  • Yamakaze J, Lu Z (2021) Deletion of the LPO gene causes multisystem inflammation and tumors in mice. Scientific Rep 11(1):12429. https://doi.org/10.1038/s41598-021-91745-8

    Article  CAS  Google Scholar 

  • Zhou M, Liu X, Li Z, Huang Q, Li F, Li C-Y (2018) Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int J Cancer 143(4):921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Pan, Yang Xin, Wang Jing, Li Yongfei, Hailong Yu, Zhang Yanxin, Liu Guangyang (2016) Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190:1174–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Medical Physiology and Dairy Departments, National Research Centre; Zoology Department, Faculty of Science, Alzhar University; Histology Department, Faculty of Dentistry, Sainai University; and Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) for their kindly cooperation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study’s conception and design.

Corresponding author

Correspondence to Khaled G. Abdel-Wahhab.

Ethics declarations

Funding

This study was not supported by any funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with animals performed by any of the authors.

Consent to participate

For this type of study consent to participate is not required. 

Consent for publication

For this type of study consent for publication is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Wahhab, K.G., Ashry, M., Hassan, L.K. et al. Nano-chitosan/bovine lactoperoxidase and lactoferrin formulation modulates the hepatic deterioration induced by 7,12-dimethylbenz[a]anthracene. Comp Clin Pathol 32, 981–991 (2023). https://doi.org/10.1007/s00580-023-03510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-023-03510-0

Keywords

Navigation