Skip to main content

Advertisement

Log in

Hyponatraemia and hypokalaemia relationship with alterations of glucose, cholesterol and total protein levels during human infection with Plasmodium falciparum

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Electrolytes, particularly sodium and potassium, are highly paramount for the uptake of nutrients that are required for the proliferation, differentiation and survival of Plasmodium falciparum in the host. Sequel to this essential role, information on the interplay between electrolytes and nutrients would add to the current understanding of the malarial infection pathophysiology. To this end, we carried out a hospital-based cross-sectional study and estimated the serum levels of sodium, potassium, glucose, cholesterol and total protein in both P. falciparum-infected patients and apparently healthy patients. Our results showed that the levels of sodium, potassium, glucose, cholesterol and total protein were significantly (p < 0.05) reduced compared to their respective control groups. In addition, glucose, cholesterol and total protein had a non-significant (p > 0.05) association with the sodium and potassium, respectively, in P. falciparum-infected patients. Evidence from the present study demonstrated that P. falciparum-induced depletion in sodium and potassium seems not to play a significant role in the alterations of glucose, cholesterol and total protein during P. falciparum infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adekunle AS, Adekunle OC, Egbewale BE (2007) Serum status of selectedbiochemical parameters in malaria: an animal model. Biomed Res 18(2):109–113

    Google Scholar 

  • Aly AS, Vaughan AM, Kappe SH (2009) Malaria parasite development in themosquito and infection of the mammalian host. Annu Rev Microbiol 63:195–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahi H, Kanazawa T, Hirayama N, Kajihara Y (2005) Investigating serum factors promoting erythrocytic growth of Plasmodium falciparum. Exp Parasitol 109(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Chukwuocha UM, Eke KN (2011) Malaria parasite status and cholesterol level ofmalaria patients in parts of the IMO River Basin of Nigeria. Asian Pac J Trop Med 4(12):993–996

    Article  CAS  PubMed  Google Scholar 

  • Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124(4):755–766

    Article  CAS  PubMed  Google Scholar 

  • Frankland S, Elliott SR, Yosaatmadja F, Beeson JG, Rogerson SJ, Adisa A, Tilley L (2007) Serum lipoproteins promote efficient presentation of the malariavirulence protein PfEMP1 at the erythrocyte surface. Eukaryot Cell 6(9):1584–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsburg H, Handeli S, Friedman S, Gorodetsky R, Krugliak M (1986) Effects of redblood cell potassium and hypertonicity on the growth of Plasmodium falciparum in culture. Z Parasitenkd 72(2):185–199

    Article  CAS  PubMed  Google Scholar 

  • Goodyer ID, Taraschi TF (1997) Plasmodium falciparum: a simple, rapid method for detecting parasite clones in microtiter plates. Exp Parasitol 86(2):158–160

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa EH, Yamaguchi K, Mori M, Nardone G (2020) Real-time cholesterolsorting in Plasmodium falciparum-erythrocytes as revealed by 3D label-freeimaging. Sci Rep 10(1):1–12

    Article  Google Scholar 

  • Hilou A, Nacoulma G, Guiguemde TR (2006) In vivo antimalarial activities of extracts from Amaranthus spinosus and Boerhaavia erecta in mice. J Ethnopharmacol 103:236–240

    Article  CAS  PubMed  Google Scholar 

  • Humeida H, Pradel G, Stich A, Krawinkel MB (2011) The effect of glucose andinsulin on in vitro proliferation of Plasmodium falciparum. J Diabetol 3:1–6

    Google Scholar 

  • Istvan ES, Das S, Bhatnagar S, Beck JR, Owen E, Llinas M, Ganesan SM, Niles JC, Winzeler, E, Vaidya AB, Goldberg DE (2019) Plasmodium Niemann-Picktype C1-related protein is a druggable target required for parasite membrane homeostasis. Elife 8:e40529

  • Kirk K (2001) Membrane transport in the malaria-infected erythrocyte. Physiol Rev 81(2):495–537

    Article  CAS  PubMed  Google Scholar 

  • Kiru AI, Bala RK, Abdulazeez AM, Bello SY, Adam AL, Suleiman SM, ShamsuA Abdulkadir ML (2018) Lipid profile and electrolyte level in malaria patients attending Muhammadu Abdullahi Wase Specialist Hospital, Kano State. Nigeria JOCAMR 5(4):1–7

    Article  Google Scholar 

  • Labaied M, Jayabalasingham B, Bano N, Cha SJ, Sandoval J, Guan G, Coppens I (2011) Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cell Microbiol 13(4):569–586

  • Lee P, Ye Z, Van Dyke K, Kirk RG (1988) X-ray microanalysis of Plasmodiumfalciparum and infected red blood cells: effects of qinghaosu and chloroquine onpotassium, sodium, and phosphorus composition. Am J TropMed Hyg 39(2):157–165

    Article  CAS  Google Scholar 

  • Lowry OH (1951) Rosebrough NJ, Farr Al, and Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Marshall W (2012) Total protein (serum, plasma). Ass Clin Biochem

  • Maitland K, Pamba A, Newton CR, Lowe B, Levin M (2004) Hypokalemia inchildren with severe falciparum malaria. Pediatr Crit Care Med 5(1):81–85

    Article  PubMed  Google Scholar 

  • Mauritz JM, Seear R, Esposito A, Kaminski CF, Skepper JN, Warley A, Lew VL, Tiffert T (2011) X-ray microanalysis investigation of the changes in Na, K, andhemoglobin concentration in Plasmodium falciparum-infected red bloodcells. Biophys J 100(6):1438–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitamura T, Hanada K, Ko-Mitamura EP, Nishijima M, Horii T (2000) Serumfactors governing intraerythrocytic development and cell cycle progression ofPlasmodium falciparum. Parasitol Int 49(3):219–229

    Article  CAS  PubMed  Google Scholar 

  • Moumaris M, Bretagne JM, Abuaf N (2019) Biological membranes and malaria parasites. Open Parasitol J 7(1):1–18

    Article  Google Scholar 

  • Murray CJ, Ortblad KF, Guinovart C, Lim SS, Wolock TM, Roberts DA, Jacobsen KH (2014) Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burdenof Disease Study 2013. Lancet 384(9947):1005–1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Neves FA, Ventura AM, Filho MG, Libonati RM (2013) Lipid parameters in ahyperendemic area for malaria. Lipids Health Dis 12:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Nsonwu-Anyanwu AC, Egbe ER, Osuoha UO, Inyang-Etoh PC, Offor SJ, Usoro CAO (2017) Falciparum malaria associated changes in biochemical indices inchildren. J Med Allied Sci 7(1):29–33

    Google Scholar 

  • Orimadegun AE, Orimadegun BE (2015) Serum Apolipoprotein-A1 and CholesterolLevels in Nigerian Children with Plasmodium falciparum Infection. Med Princ Pract 24:318–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Parida M, Thatoi PK, Choudhury A, Bhuin S, Behera S, Mohanty R (2019) Hyponatremia as a Mortality Predictor of Severe Malaria: A Hospital Based Cross-sectional Study. J Clin Diagn Res 13(2):5–8

    Google Scholar 

  • Pillai AD, Addo R, Sharma P, Nguitragool W, Srinivasan P, Desai SA (2013) Malaria parasites tolerate a broad range of ionic environments and do not require hostcation remodelling. Mol Microbiol 88(1):20–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007) Cholesterol depletion induces dynamicconfinement of the G-protein coupled serotonin1A receptor in the plasma membrane ofliving cells. Biochim Biophys Acta (BBA)-Biomembranes 1768(3):655–668

  • Samuel BU, Mohandas N, Harrison T, McManus H, Rosse W, Reid M, Haldar K (2001) The role of cholesterol and glycosylphosphatidylinositol-anchored proteins oferythrocyte rafts in regulating raft protein content and malarial infection. J Biol Chem 276:29319–29329

  • Sherman IW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43(4):453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanachartwet V, Krudsood S, Tangpukdee N, Phumratanaprapin W, Silachamroon U, Leowattana W, Wilairatana P, Brittenham GM, Looareesuwan S, Neild GH (2008) Hyponatraemia and hypokalaemia in adults with uncomplicated malaria in Thailand. Trop Doct 38(3):155–157

  • Tokumasu F, Crivat G, Ackerman H, Hwang J, Wellems TE (2014) Inwardcholesterol gradient of the membrane system in P. falciparum-infected erythrocytesinvolves a dilution effect from parasite-produced lipids. Biol Open 3(6):529–541

  • Usman MA, Ibrahim MA, Salman AA, Sallau AB (2020) Depletion of cholesterolcould be associated with modulation of progesterone but not other sex hormone levels during Plasmodium falciparum infection in humans: a cross-sectional study from Zaria. Nigeria Parasitol Res 119(12):4143–4150

    Article  PubMed  Google Scholar 

  • Vial HJ, Eldin P, Tielens AG, van Hellemond JJ (2003) Phospholipids in parasitic protozoa. Mol Biochem Parasitol 126(2):143–154

    Article  CAS  PubMed  Google Scholar 

  • Visser BJ, Wieten RW, Nagel IM, Grobusch MP (2013) Serum lipids andlipoproteins in malaria – a systematic review and meta-analysis. Malar J 12:442

    Article  PubMed  PubMed Central  Google Scholar 

  • White NJ (2008) Plasmodium knowlesi: The fifth human malaria parasite. Clin Infect Dis 46(2):172–173

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2010) World malaria report: 2010, WHO: Geneva, Switzerland. 205 p. Available at: https://apps.who.int/iris/handle/10665/44451. Retrieved 2019/04/25

    Google Scholar 

  • World Health Organization (2019)‎ World malaria report: 2019, WHO: Geneva, Switzerland. 232. Available at: https://www.who.int/publications/i/item/9789241565721. Retrieved 2021/08/13

    Google Scholar 

  • Yalçin M, Sevim E, Duran A (2015) Treated with artemether-lumefantrine fiveevaluation of P. falciparum malaria cases in terms of hyponatremia andthrombocytopenia. Türkiye Parazitolojii Dergisi 39(2):155

Download references

Acknowledgements

The support of Mr. Mohammed Ibrahim of Haematology unit, Ahmadu Bello University Medical Centre, in providing necessary assistance during sample collection was highly appreciated by the authors. Furthermore, the authors wish to express their profound gratitude to the management of Ahmadu Bello University, Zaria, Nigeria, for providing the facilities used for this study.

Funding

Financial support, from any grant funding body, was not received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Mukhtar Adeiza Suleiman provided conceptualisation and design. Tahiru Umaru, Karimatu Dauda, Shedrack Renan John did data acquisition. Mukhtar Adeiza Suleiman, Tahiru Umaru, Karimatu Dauda, Shedrack Renan John, Mohammed Aliyu Usman analysed and interpreted the data. Mohammed Aliyu Usman drafted the manuscript. Mukhtar Adeiza Suleiman, Tahiru Umaru, Karimatu Dauda, Shedrack Renan John, Mohammed Aliyu Usman contributed to revision, vetting and approval of the final manuscript for submission.

Corresponding author

Correspondence to Mukhtar Adeiza Suleiman.

Ethics declarations

Ethical approval

All procedures carried out in this research study were in line with the ethical standards of the institutional research committee on human experimentation and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from each individual participant in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleiman, M.A., Umaru, T., Dauda, K. et al. Hyponatraemia and hypokalaemia relationship with alterations of glucose, cholesterol and total protein levels during human infection with Plasmodium falciparum. Comp Clin Pathol 31, 557–563 (2022). https://doi.org/10.1007/s00580-022-03354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-022-03354-0

Keywords

Navigation