Skip to main content

Fatty acid composition and antioxidant effect of coconut oil in Drosophila melanogaster

Abstract

Coconut oil (CO) has gained interest in western medicine due to its promising therapeutic approach in the treatment of Alzheimer’s disease as well as combating oxidative stress-induced neurodegeneration. Using a wet extraction process, CO was extracted from fresh coconut milk. Flies were raised on CO-supplemented diet for 5 days, and the locomotor performance and survival rate were examined afterwards. The antioxidant activity of CO extract was investigated in vitro; in vivo using Drosophila melanogaster and the CO fatty acid (FA) composition quantified using gas-chromatography mass spectrometry (GC-MS). The survival rate and locomotor performance of the D. melanogaster reduced significantly at higher concentration of CO (1%)-supplemented diet. CO exhibits significant antioxidant ability by scavenging DPPH and ABTS radicals in a dose-dependent manner. Malondialdehyde (MDA) content was also significantly reduced in vitro in a dose-dependent manner. Likewise, groups II and III fed with supplemented 0.1% and 1% CO reduce MDA level significantly (p < 0.05) in AlCl3-induced flies. GC-MS quantification revealed eight FAs with myristoleic acid (C14:0) as the most abundant, followed by stearic acid (C18:0). The major fatty acids established in this study are not retained as fat in the body but used to generate energy. These observed results prove the antioxidant ability of phytochemicals in CO. In conclusion, coconut oil is a good source of phenolic compounds and healthy FA that confers its therapeutic use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Abolaji AO, Kamdem JP, Farombi EO, Rocha JB (2013) Drosophila melanogaster as a promising model organism in toxicological studies. Arch Basic Appl Med 1:33–38

    Google Scholar 

  • Abolaji AO, Kamdem JP, Lugokenski TH (2015) Ovotoxicants 4-vinylcyclohexene 1, 2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol 5:328–339. https://doi.org/10.1016/j.redox.2015.06.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Abolaji OA, Kamdem JP, Lugokenski TH, Nascimento TK, Waczuk EP, Farombi EO, Rocha JBT (2014) Involvement of oxidative stress in 4-vinylcyclohexene- induced toxicity in Drosophila melanogaster. Free Radic Biol Med 71:99–108. https://doi.org/10.1016/j.freeradbiomed.2014.03.014

    CAS  Article  Google Scholar 

  • Adedara IA, Abolaji AO, Rocha JBT, Farombi EO (2016) Diphenyl diselenide protects against mortality, locomotor deficits and oxidative stress in Drosophila melanogaster model of manganese-induced neurotoxicity. Neurochem Res 41:1430–1438. https://doi.org/10.1007/s11064-016-1852-x

    CAS  Article  PubMed  Google Scholar 

  • Adedara IA, Klimaczewski CV, Barbosa NB, Farombi EO, Souza DO, Rocha JBT (2015a) Influence of diphenyl diselenide on chlorpyrifos-induced toxicity in Drosophila melanogaster. J Trace Elem Med Biol 32:52–59. https://doi.org/10.1016/j.jtemb.2015.05.00

    CAS  Article  PubMed  Google Scholar 

  • Adedara IA, Rosemberg DB, Souza DO, Kamdem JP, Farombi EO, Aschner M, Rocha JBT (2015b) Biochemical and behavioral deficits in lobster cockroach Nauphoeta cinerea model of methylmercury exposure. Toxicol Res 4:442–451. https://doi.org/10.1039/C4TX00231H

    CAS  Article  Google Scholar 

  • Ahmad Z, Hasham R, Aman Nor NF, Sarmidi MR (2015) Physico-chemical and antioxidant analysis of virgin coconut oil using West African tall variety. J Adv Res Mat Sci 13:1–10

    Google Scholar 

  • Anosike CA, Obidoa O (2010) Anti-inflammatory and anti-ulcerogenic effect of ethanol extract of coconut (Cocos nucifera) on experimental rats. African J Food Agric Nutr Dev 10(10). https://doi.org/10.4314/ajfand.v10i10.62910

  • Asian and Pacific Coconut Community (APCC) (2016) Internet: standard for virgin coconut oil, (http://www.apccsec.org/standards.htm/ on 02/10/2016; 2003). [acessed: 04.21.2016].

  • Baiano A, del Nobile MA (2015) Antioxidant compounds from vegetable matrices: biosynthesis, occurrence, and extraction systems. Crit Rev Food Sci Nutr 56:2053–2068

    Article  Google Scholar 

  • Boemeke L, Marcadenti A, Busnello FM, Gottschall CBA (2015) Effects of coconut oil on human health. Open J Endocr Metabol Dis 5:84–87. https://doi.org/10.4236/ojemd.2015.57011

    CAS  Article  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft Technol 28:25–30

    CAS  Article  Google Scholar 

  • Mahayothee B, Koomyart I, Khuwijitjaru P, Siriwongwilaichat P, Nagle M, Müller J (2016) Phenolic compounds, antioxidant activity, and medium chain fatty acids profiles of coconut water and meat at different maturity stages. Int J Food Prop 19(9):2041–2051. https://doi.org/10.1080/10942912.2015.1099042

    CAS  Article  Google Scholar 

  • Chen XM, Lv JS, Zhang LL, Zhong H, Zhao JY (2009) GC-MS determination of volatile components of flowers of white clove. Phys Test Chem Anal 45:1174–1177

    CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    CAS  Article  Google Scholar 

  • Dauqan EMA, Sani HA, Abdullah A, Kasim ZM (2011) Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil and coconut oil) by gas chromatography, 2nd International Conference on Chemistry and Chemical Engineering IPCBEE., 14:31-34.

  • David SP, Ware JJ, Chu IM, Loftus PD, Fusar-Poli P, Radua J, Munafò MR, Ioannidis JPA (2013) Potential reporting bias in fMRI studies of the brain. PLoS ONE 8(7):e70104

    CAS  Article  Google Scholar 

  • DebMandal M, Mandal S (2011) Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med 4(3):241–247

    Article  Google Scholar 

  • Dulloo AG (2011) The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev 12:866–883

    CAS  Article  Google Scholar 

  • Ghani NAA, Channip AA, Chok Hwee Hwa P, Ja’afar F, Yasin HM, Usman A (2018) Physicochemical properties, antioxidant capacities, and metal contents of virgin coconut oil produced by wet and dry processes. Food Sci Nutr 6:1298–1306. https://doi.org/10.1002/fsn3.671

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gopala KAG, Gaurav R, Ajit SB et al (2010) Coconut oil: chemistry, production and its applications–a review. Indian Coconut J 73:15–27

    Google Scholar 

  • Kostik V, Memeti S, Bauer B (2012) Fatty acid composition of edible oils and fats. J Hyg Eng Des 4:112–116

    Google Scholar 

  • Kumalaningsih S, Padaga M (2012) The utilization of microorganisms isolated from fermented coconut milk for the production of virgin coconut oil. J Basic Appl Sci Res 2:2286–2290

    Google Scholar 

  • Le Bourg E, Lints FA (1992) Hypergravity and aging in Drosophila melanogaster for climbing activity. Gerontology 38:59–64. https://doi.org/10.1159/000213307

    Article  PubMed  Google Scholar 

  • Lehmann M (2018) Endocrine and physiological regulation of neutral fat storage in Drosophila. Mol Cell Endocrinol 461:165–177. https://doi.org/10.1016/j.mce.2017.09.008

    CAS  Article  PubMed  Google Scholar 

  • Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y (2015) The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 16:26087–26124

    CAS  Article  Google Scholar 

  • Li Y, Zhang JJ, Xu DP, Zhou T, Zhou Y, Li S, Li HB (2016) Bioactivities and health benefits of wild fruits. Int J Mol Sci 17:1258

    Article  Google Scholar 

  • Marina AM, Rosli WIW, Neoh SL (2014) Frying quality of virgin coconut oil as affected by Zea mays extract. Sains Malaysiana 43:1311–1315

    Google Scholar 

  • Mills E, Dong X, Wang F, Xu H (2010) Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem 2:51–64

    CAS  Article  Google Scholar 

  • Minotti G, Aust SD (1987) An investigation into the mechanism of citrate-Fe2+-dependent lipid peroxidation. Free Radic Biol Med 3:379–387

    CAS  Article  Google Scholar 

  • Mushtaq M, Wani SM (2013) Polyphenols and human health–a review. Int J Pharm Bio Sci 4:338–60.x

    CAS  Google Scholar 

  • Musselman NJ, Pendse LP, Baranski J, Bodmer TJ, Ocorr K et al (2013) A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet 9(1):e1003175. https://doi.org/10.1371/journal.pgen.1003175

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Narayanankutty A, Illam SP, Raghavamenon AC (2018) Health impacts of different edible oils prepared from coconut (Cocos nucifera): a comprehensive review. Trends Food Sci Technol 80:1–7

    CAS  Article  Google Scholar 

  • Narayanankutty A, Mukesh RK, Ayoob SK, Ramavarma SK, Suseela IM, Manalil JJ, Kuzhivelil BT, Raghavamenon AC (2016) Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats. J Food Sci Technol 53:895–901

    CAS  Article  Google Scholar 

  • Neelakantan N, Seah JYH, Dam RMV (2020) The effect of coconut oil consumption on cardiovascular risk factors. A systematic review and meta-analysis of clinical trials. Circulation 141:814. https://doi.org/10.1161/CIRCULATIONAHA.119.043052

    Article  Google Scholar 

  • Oboh G, Adewumi TM, Ademosun AO (2014) Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation. J Oleo Sci 63(4):373–381

    CAS  Article  Google Scholar 

  • Oboh G, Odubanjo VO, Bello F, Ademosun AO, Oyeleye SI, Nwanna EE, Ademiluyi AO (2016) Aqueous extracts of avocado pear (PerseaamericanaMill.) leaves and seeds exhibit anticholinesterases and antioxidant activities in vitro. J Basic Clinical Physiol Pharmacol 27:131–140

    CAS  Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  Article  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:265–267

    Article  Google Scholar 

  • Paula MT, Zemolin AP, Vargas AP, Golombieski RM, Loreto EL, Flores EM, Pereira AB, Rocha JB, Merritt TJ, Franco JL, Posser T (2013) Effects of Hg (II) exposure on MAPK phosphorylation and antioxidant system in D. melanogaster. Environ Toxicol

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26

    CAS  Article  Google Scholar 

  • Piluzza G, Bullitta S (2011) Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm Biol 49:240–247

    CAS  Article  Google Scholar 

  • Prasad N, Satheesh N (2014) Production of virgin coconut oil by induced fermentation with Lactobacillus plantarum NDRI strain 184. Hrvatski ˇcasopis za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam 9:37–42

    Google Scholar 

  • Puntel RL, Nogueira CW, Rocha JB (2005) Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem Res 30:225–235

    CAS  Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9):1231–1237

    CAS  Article  Google Scholar 

  • Rohman MM, Ahmed I, Molla MR, Hossain MA, Amiruzzaman M (2019) Evaluation of salt tolerant mungbean (Vigna radiata L.) Genotypes on growth through bio-molecular approaches. Bangladesh J Agr Res 44(3):469–492

  • Saeed N, Khan RM, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med 12:221

    CAS  Article  Google Scholar 

  • Sharma AJ (2015) Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review. J Biomed Sci 22:93. https://doi.org/10.1186/s12929-015-0192-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 54(3):151–160

    CAS  Article  Google Scholar 

  • Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N (2013) Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 24:613–623

    CAS  Article  Google Scholar 

  • Sudati JH, Vieira FA, Pavin SS, Dias GRM et al (2013) Valerianaofficinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster. NeuroToxicol 37:118–126

    CAS  Article  Google Scholar 

  • Suryani AD (2016) Isolation and characterization of bacteriocins bacteria Lactobacillus Plantarum strain NM178-5 from fermentation process with contained on coconut Milk. Transylv Rev 24:614–628

    Google Scholar 

  • Vysakh A, Ratheesh M, Rajmohanan TP (2014) Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti- inflammatory action. Int Immunopharmacol 20:124–130

    CAS  Article  Google Scholar 

  • Wallace TC (2018) Health effects of coconut oil-a narrative review of current evidence. J Am Coll Nutr 38:97–107. https://doi.org/10.1080/07315724.2018.1497562

    CAS  Article  PubMed  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Inc., Upper Saddle River, p 620

    Google Scholar 

  • Zhang JJ, Li Y, Zhou T, Xu DP, Zhang P, Li S, Li HB (2016) Bioactivities and health benefits of mushrooms mainly from China. Molecules 21:938

    Article  Google Scholar 

  • Zhou F, Zhao H, Bai F, Dziugan P, Liu Y, Zhang B (2014) Purification and characterisation of the bacteriocin produced by Lactobacillus plantarum, isolated from Chinese pickle. Czech J Food Sci 32:430–436

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of all authors for their immense contributions made during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayo Emmanuel Oluwarotimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Odubanjo, O.V., Oluwarotimi, A.E., Ayeni, C.O. et al. Fatty acid composition and antioxidant effect of coconut oil in Drosophila melanogaster. Comp Clin Pathol 29, 1147–1155 (2020). https://doi.org/10.1007/s00580-020-03162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-020-03162-4

Keywords

  • Antioxidant
  • Fatty acids
  • Drosophila melanogaster
  • Coconut oil
  • Neurodegeneration