Comparative Clinical Pathology

, Volume 28, Issue 4, pp 1119–1135 | Cite as

Ameliorative effects of alpha-lipoic acid and imidocarb dipropionate on clinico-haematological changes induced by experimental Babesia canis vogeli infection in dogs

  • Ajoke Modupeoluwa EhimiyeinEmail author
  • Shehu Usman Abdullahi
  • Joseph Olusegun Ayo
  • Oluyinka Oluseyi Okubanjo
  • Emmanuel Oludare Balogun
Original Article


The aim of the study was to evaluate the effects of imidocarb dipropionate and alpha-lipoic acid (ALA) on clinico-haematological parameters of dogs inoculated with Babesia canis vogeli. Twenty-one dogs were divided into uninfected untreated (n = 4), infected untreated (n = 6), infected and treated with imidocarb dipropionate (6 mg/kg subcutaneously) alone (n = 3), infected and treated with ALA (15 mg/kg orally) alone (n = 5), and infected and treated with both imidocarb dipropionate and ALA (n = 3). Molecularly identified Babesia canis vogeli was experimentally inoculated into the infected groups, and treatment commenced at day 12 post-inoculation (PI). Behavioural events and blood samples were obtained and analysed before inoculation, at days 11 PI, 8, 15, and 43 post-treatment (PT). Behavioural events including vocalisation, licking/grooming, and tail wagging decreased post-inoculation. Treatments with imidocarb and ALA alleviated the clinical manifestations of dry muzzle, ocular discharge, and splenomegaly. At days 15 and 43 PT, imidocarb + ALA recorded the highest packed cell volume (41.13 ± 2.96%; 47.40 ± 3.72%) and erythrocyte count (6.10 ± 0.44 × 1012/L; 6.99 ± 0.56 × 1012/L) compared to other infected groups. The haemoglobin concentration at day 15 PT (13.80 ± 0.91 g/dL) increased in the imidocarb + ALA group. Thrombocytopenia was recorded in all the infected groups at day 11 PI. In conclusion, co-administration of imidocarb with ALA acted synergistically and also ameliorated the clinico-haematological changes in experimental canine babesiosis, and the agent may be a promising and potent drug in the management of canine babesiosis.


Babesiosis Dog Alpha-lipoic acid Anaemia 



The authors wish to appreciate the Tertiary Education Trust (TET) fund Nigeria for the grant, the technical staff of Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria, for their expertise. We also thank Dr. Kenji Hikosaka of the Department of Infection and Host Defence, Graduate School of Medicine, Chiba University, Chiba, Japan for helping out with the molecular aspect of the study.


Dr. Ajoke Modupeoluwa Ehimiyein received grant from Tertiary Education Trust (TET) fund, Nigeria, to carry out this research.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was approved by the Animal Use and Welfare Committee of Ahmadu Bello University, Zaria, with approval number of ABUCAUC/2016/009, and conducted in accordance with international, national and institutional guidelines for the care and use of animal.


  1. Abdullahi SU, Mohammed AA, Trimnell AR, Sannusi A, Alafiatayo R (1990) Clinical and haematological findings in 70 naturally occurring cases of canine babesiosis. J Small Anim Pract 31:145–147CrossRefGoogle Scholar
  2. Adaszek Ł, Martinez AC, Winiarczyk S (2011) The factors affecting the distribution of babesiosis in dogs in Poland. Vet Parasitol 181:160–165CrossRefGoogle Scholar
  3. Adaszek L, Obara-Galek J, Piech T, Winiarczyk M, Kalinowski M, Winiarczyk S (2016) Possible vertical transmission of Babesia canis canis from a bitch to her puppies: a case report. Vet Med 61(5):263–266CrossRefGoogle Scholar
  4. Adebayo OO, Ajadi RA, Omobowale TO, Omotainse SO, Dipeolu MA, Nottidge HO, Otesile EB (2016) Reliability of clinical monitoring for the diagnosis of babesiosis in dogs in Nigeria. Vet Med Res Rep 7:85–90Google Scholar
  5. Aleri JW, Kipyegon AN, Mande JD, Mulei CM, Karanja DN (2011) Acute respiratory syndrome distress due to babesiosis in a dog: case report. Res J Anim Sci 5(2):14–16Google Scholar
  6. Al-Saad KM (2009) Acute babesiosis in foals. J Anim Vet Adv 8(12):2585–2589Google Scholar
  7. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  8. Aysul N, Ural K, Ulutaş B, Eren H, Karagenç T (2013) First detection and molecular identification of Babesia gibsoni in two dogs from the Aydın Province of Turkey. Turk J Vet Anim Sci 37:226–229Google Scholar
  9. Baneth G (2018) Antiprotozoal treatment of canine babesiosis. Vet Parasitol 254:58–63CrossRefGoogle Scholar
  10. Barker EN, Langton DA, Helps CR, Brown G, Malik R, Shaw SE, Tasker S (2012) Haemoparasites of free-roaming dogs associated with several remote aboriginal communities in Australia. BMC Vet Res 8:55CrossRefGoogle Scholar
  11. Bashir IN, Chaudhry ZI, Ahmed S, Saeed MA (2009) Epidemiological and vector identification studies on canine babesiosis. Pak Vet J 29(2):51–54Google Scholar
  12. Behera R, Chakravarty AK, Sahu A, Kashyap N, Rai S, Mandal A (2017) Identification of best temperature humidity index model for assessing impact of heat stress on milk constituent traits in Murrah buffaloes under subtropical climatic conditions of northern India. Indian J Anim Res 52(1):13–19.
  13. Bharath KRC, Amaravathi M, Nagendra RM (2016) Babesiosis in a German Shepherd dog and its successful treatment. Int J Adv Multidiscip Res 3(2):94–95Google Scholar
  14. Cardoso L, Oliveira AC, Granada S, Nachum-Biala Y, Gilad M, Lopes AP, Sousa SR, Vilhena H, Baneth G (2016) Molecular investigation of tick-borne pathogens in dogs from Luanda, Angola. Parasites Vector 9:252CrossRefGoogle Scholar
  15. Chakravorty SJ, Craig A (2005) The role of ICAM-1 in Plasmodium falciparum cytoadherence. Europ J Cell Biol 84:15–27CrossRefGoogle Scholar
  16. Davitkov D, Vucicevic M, Stevanovic J, Krstic V, Tomanovic S, Glavinic U, Stanimirovic Z (2015) Clinical babesiosis and molecular identification of babesia canis and babesia gibsoni infections in dogs from Serbia. Acta Vet Hung 63(2):199–208CrossRefGoogle Scholar
  17. Defauw P, Schoeman JP, Smets P, Goddard A, Meyer E, Liebenberg C, Daminet S (2012) Assessment of renal dysfunction using urinary markers in canine babesiosis caused by Babesia rossi. Vet Parasitol 190(3–4):326–332CrossRefGoogle Scholar
  18. Duarte SC, Linhares GFC, Romanowsky TN, Neto OJS, Borges LMF (2008) Assessment of primers designed for the subspecies-specific discrimination among Babesia canis canis, Babesia canis vogeli and Babesia canis rossi by PCR assay. Vet Parasitol 152(1-2):16–20.CrossRefGoogle Scholar
  19. Duarte SC, Parente JA, Pereira M, Soares CM, Fontgall G, Linhares C (2011) Phylogenetic characterization of Babesia canis vogeli in dogs in the state of Goiás. Brazil Rev Bras Parasitol Vet Jaboticabal 20(4):274–280CrossRefGoogle Scholar
  20. Eichenberger RM, Riond B, Willi B, Hofmann-Lehmann R, Deplazes P (2016) Prognostic markers in acute Babesia canis infections. J Vet Intern Med 30(1):174–182CrossRefGoogle Scholar
  21. Gabrielli S, Otasevic S, Ignjatovic A, Savic S, Fraulo M, Arsic-Arsenijevic V, Momcilovic S, Cancrini G (2015) Canine babesioses in non-investigated areas of Serbia. Vector Borne Zoonotic Dis 15:535–538CrossRefGoogle Scholar
  22. Goddard A, Leisewitz AL, Kristensen AT, Schoeman JP (2015) Platelet indices in dogs with Babesia rossi infection. Vet Clin Pathol 2015:1–5Google Scholar
  23. Goddard A, Leisewitz AL, Kjelgaard-Hansen M, Kristensen AT, Schoeman JP (2016) Excessive pro-inflammatory serum cytokine concentrations in virulent canine babesiosis. PLoS One 11:e0150113CrossRefGoogle Scholar
  24. Gomes MB, Negrato CA (2014) Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr 6(1):80CrossRefGoogle Scholar
  25. Gonde S, Chhabra S, Singla LD, Bansal BK (2014) Peritoneal effusion in a dog due to Babesia gibsoni infection. Case Rep Vet Med 2014:1–4. CrossRefGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  27. Halos L, Lebert I, Chao I, Vourc G, Ducrot C, David AD, Jean-François RJF, Guillot J (2013) Questionnaire-based survey on distribution and clinical incidence of canine babesiosis in France. BMC Vet Res 9:41CrossRefGoogle Scholar
  28. Hildebrand F, Pape HC, Harwood P (2005) Role of adhesion molecule ICAM in the pathogenesis of polymicrobial sepsis. Exp Toxicol Pathol 56(4–5):281–290CrossRefGoogle Scholar
  29. Kim Y, Podder B, Song H (2013) Cytoprotective effect of alpha-lipoic acid on paraquat-exposed human bronchial epithelial cells via activation of nuclear factor erythroid related factor-2 pathway. Biol Pharm Bull 36(5):802–811CrossRefGoogle Scholar
  30. Kim J, Cho H, Sagong B, Kim S, Lee J, So H, Lee I, Kim U, Lee K, Choo Y (2014) Alpha-lipoic acid protects against cisplatin-induced ototoxicity via the regulation of MAPKs and proinflammatory cytokines. Biochem Biophys Res Commun 449(2):183–189CrossRefGoogle Scholar
  31. Kirtz G, Leschnik M, Hooijberg E, Tichy A, Leidinger E (2012) Inclinic laboratory diagnosis of canine babesiosis (Babesia caniscanis) for veterinary practitioners in Central Europe. Tierärztl Prax K 40:87–94CrossRefGoogle Scholar
  32. Konto M, Biu AA, Ahmed MI, Mbaya AW, Luka J (2014) Clinico-biochemical responses of dogs to experimental infection with Babesia canis. Vet World 7(3):113–118CrossRefGoogle Scholar
  33. Köster LS, Lobetti RG, Kelly P (2015) Canine babesiosis: a perspective on clinical complications, biomarkers, and treatment. Vet Med Res Rep 6:119–128Google Scholar
  34. Kubo S, Roh MS, Oyedeji C, Romsdahi MM, Nishhioka K (1998) Effects of tuftsin on human Kupffer cell. Hepatogastroenterology 45(24):22770–22274Google Scholar
  35. Kučer N, Matijatko V, Kiš I, Grden D, Brkljačić M, Foršek J, Žvorc Z, Rafaj RB (2008) White blood cell count and neutrophil to lymphocyte ratio in uncomplicated and complicated canine babesiosis caused by Babesia canis canis. Vet Arhiv 78(4):321–330Google Scholar
  36. Kučer N, Marin G, Kules J, Trsan J, Kajin F, Rafag RB (2019) Evaluation of thyroid function abnormalities in sixty dogs naturally infected with Babesia canis. Vet Arhiv 89(1):55–69CrossRefGoogle Scholar
  37. Kules J, Mrljak V, Rafaj RB, Selanec J, Burchmore R, Eckersall PD (2014) Identification of serum biomarkers in dogs naturally infected with Babesia canis canis using a proteomic approach. BMC Vet Res 10:111CrossRefGoogle Scholar
  38. Kumar V, Kaur P, Sarangal C, Pal H, Bangar G, Sharma H, Wadhawan VM (2015) Prevalence of canine babesiosis in Jalandhar district, Punjab. India Res J Anim Vet Fish Sci 3(4):6–8Google Scholar
  39. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  40. Laha R, Das M, Sen A (2015) Morphology, epidemiology, and phylogeny of Babesia: an overview. Trop Parasitol 5(2):94–100CrossRefGoogle Scholar
  41. Lavan R, Tunceli K, de Swardt H, Chelchinskey C, Abatzidis M, Armstrong R (2018) Canine babesiosis treatment rates in south African veterinary clinics between 2011 and 2016. Parasit Vector 11:386CrossRefGoogle Scholar
  42. Li Y, Ma QG, Zhao LH, Duan GX, Zhang JY, Ji C (2014) Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets. Int J Mol Sci 15:5649–5662CrossRefGoogle Scholar
  43. Machlus KR, Johnson KE, Kulenthirarajan R, Forward JA, Tippy MD, Soussou TS, El-Husayni SH, Wu SK, Wang S, Watnick RS, Italiano JE Jr, Battinelli EM (2016) CCL5 derived from platelets increases megakaryocytes proplatelet formation. Blood 127(7):921–926CrossRefGoogle Scholar
  44. Mine S, Fujisaki T, Suematsu M, Tanaka Y (2001) Activated platelets and endothelial cell interaction with neutrophils under flow conditions. Intern Med 40(11):1085–1092CrossRefGoogle Scholar
  45. Minemura M, Tajiri K, Shimizu Y (2009) Systemic abnormalities in liver disease. World J Gastroenterol 15(24):2960–2974CrossRefGoogle Scholar
  46. Mohr AJ, Lobetti RG, van der Lugt JJ (2000) Acute pancreatitis: a newly recognised potential complication of canine babesiosis. J S Afri Vet Assoc 71(4):232–239Google Scholar
  47. Nalubamba KS, Mudenda NB, Namwila MM, Mulenga CS, Bwalya EC, M’kandawire E, Saasa N, Hankanga C, Oparaocha E, Simuunza M (2015) A study of naturally acquired canine babesiosis caused by single and mixed Babesia species in Zambia: Clinicopathological findings and case management. J Parasitol Res.
  48. Narurkar R, Mamorska-Dyga A, Agarwal A, Nelson JC, Liu D (2017) Babesiosis-associated immune thrombocytopenia. Stem Cell Investig 4:1. CrossRefGoogle Scholar
  49. Ogo NI, Lawal AI, Okubanjo OO, Kamani J, Ajayi OO (2011) Current status of canine babesiosis and the situation in Nigeria: a review. Nig Vet J 32:69–78CrossRefGoogle Scholar
  50. Omobowale TO, Emikpe BO, Alaka OO, Nottidge HO (2017) Haematological changes and evidence of multiple organ involvement in natural babesiosis in Nigerian dogs. Anim Res Int 14(1):2604–2610Google Scholar
  51. Penzhorn BL (2011) Why is Southern African canine babesiosis so virulent? An evolutionary perspective. Parasites Vector 4:51CrossRefGoogle Scholar
  52. Penzhorn BL, Vorster I, Harrison-White RF, Oosthuizen MC (2017) Black-backed jackals (Canis mesomelas) are natural hosts of Babesia rossi, the virulent causative agent of canine babesiosis in sub-Saharan Africa. Parasites Vector 10:124CrossRefGoogle Scholar
  53. Piratae S, Sae-chue B, Sukumolanan P, Phosri A (2017) Molecular detection of blood pathogens and their impacts on levels of packed cell volume in stray dogs from Thailand. Asian Pac J Trop Dis 7(4):233–236CrossRefGoogle Scholar
  54. Rafaj B, Kules J, Selanec J, Vrkic N, Zovko V, Zupancic MM, Trampus BA, Matijatko V, Crnogaj M, Mrljak V (2013) Markers of coagulation activation, endothelial stimulation, and inflammation in dogs with babesiosis. J Vet Intern Med 27:1172–1178CrossRefGoogle Scholar
  55. Ramamurthy S, Ronnet G (2012) AMP-activated protein kinase (AMPK) and energy- sensing in the brain. Exp Neurobiol 21(2):52–60CrossRefGoogle Scholar
  56. Razmi GR, Naghibi A, Aslani MR, Hossieni H (2003) An epidemiological study on Babesia infection in small ruminants in Mashhad suburb, Khorasan province, Iran. Small Rum Res 50(1–2):39–44CrossRefGoogle Scholar
  57. Reddy BS, Sivajothi S, Reddy LSSV, Raju KGS (2016) Clinical and laboratory findings of Babesia infection in dogs. J Parasit Dis 40(2):268–272CrossRefGoogle Scholar
  58. René-Martellet M, Chêne J, Chabanne L, Chalvet-Monfray K, Bourdoiseau G (2013) Clinical signs, seasonal occurrence and causative agents of canine babesiosis in France: results of a multiregional study. Vet Parasitol 197:50–58CrossRefGoogle Scholar
  59. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  60. Salem NY, Farag HS (2014) Clinical, haematologic, and molecular findings in naturally occurring Babesia canis vogeli in Egyptian dogs. Vet Med Int 2014:2014CrossRefGoogle Scholar
  61. Sasaki M, Omobowale O, Tozuka M, Ohta K, Matsuu A, Nottidge HO, Hirata H, Ikadai H, Oyamada T (2007) Molecular survey of Babesia canis in dogs in Nigeria. J Vet Med Sci 69:1191–1193CrossRefGoogle Scholar
  62. Schaarschmidt D, Trachsel M, Achermann M, Hartelt K, Oehme R, Muller W (2006) Importance of PCR for the diagnostics of canine babesiosis. Schweiz Archiv Tierheilkd 148:633–640CrossRefGoogle Scholar
  63. Scheepers E, Leisewitz AL, Thompson PN, Christopher MM (2011) Serial haematology results in transfused and non-transfused dogs naturally infected with Babesia rossi. J S Afri Vet Assoc 82(3):136–143Google Scholar
  64. Schetters TPM, Kleuskens JAGM, Scholtes NC, Pasman JW, Bos HJ (1994) Vaccination of dogs against Babesia canis infection using antigens from culture supernatants with emphasis on clinical babesiosis. Vet Parasitol 52(3–4):219–233CrossRefGoogle Scholar
  65. Schoeman JP (2009) Canine babesiosis. Onderstepoort J Vet Res 76(1):59–66CrossRefGoogle Scholar
  66. Shah SA, Sood NK, Tumati SR (2011) Haemato biochemical changes in natural cases of canine babesiosis. Asian J Anim Sci 5(6):387–392CrossRefGoogle Scholar
  67. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790:1149–1160CrossRefGoogle Scholar
  68. Shima KF, Tion TM, Mosugu IJ, Apaa TT (2015) Retrospective study of disease incidence and other clinical conditions diagnosed in owned dogs in Delta State. Nig J Adv Vet Anim Res 2(4):435–449CrossRefGoogle Scholar
  69. Singh A, Singh H, Singh NK, Singh ND, Rath SS (2014) Canine babesiosis in Northwestern India: molecular detection and assessment of risk factors. Biomed Res Int 1–5.
  70. Sivajothi S, Reddy BS, Rayulu VC, Venkatasivakumar R (2014) Babesiosis in dogs: a report of two different cases. Adv Appl Sci Res 5(3):276–279Google Scholar
  71. Solano-Gallego L, Baneth G (2011) Babesiosis in dogs and cats-expanding parasitological and clinical spectra. Vet Parasitol 181:48–60CrossRefGoogle Scholar
  72. Solano-Gallego L, Sainz A, Roura X, Estrada-Peña A, Miró G (2016) A review of canine babesiosis: the European perspective. Parasites Vector 9:336CrossRefGoogle Scholar
  73. Spolidorio MG, Torres MM, Campos WN, Melo ALT, Igarashi M, Amude AM, Labruna MB, Aguiar DM (2011) Molecular detection of Hepatozoon canis and Babesia canis vogeli in domestic dogs from Cuiabá, Brazil. Rev Bras Parasitol Vet 20(3):253–255CrossRefGoogle Scholar
  74. Swann JW, Skelly BJ (2016) Canine autoimmune haemolytic anemia: management challenges. Vet Med Res Rep 7:101–112Google Scholar
  75. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  76. Tiškina V, Capligina V, Must K, Berzina I, Ranka R, Jokelainen P (2016) Fatal Babesia canis canis infection in a splenectomized Estonian dog. Acta Vet Scand 58:7CrossRefGoogle Scholar
  77. Torbica G, Bedrica L, Samardzija M, Lipar M, Ljubojevic D, Kreszinger M, Duricic D, Harapin I (2013) Canine babesiosis treatment with three different medicines. Acta Vet Beograd 63(2–3):279–290CrossRefGoogle Scholar
  78. Torti M, Čerlek M, Matijatko V, Brkljacic M, Kis I, Mayer I, Potocnjak D, Mrljak V (2014) Arterial blood pressure values in dogs naturally infected with Babesia canis. Vet Arhiv 84(6):563–574Google Scholar
  79. Vannier E, Gewurz BE, Kraus PJ (2008) Human babesiosis. Infect Dis Clin N Am 22:469–488CrossRefGoogle Scholar
  80. Wei L, Kelly P, Ackerson K, Zhang J, El-Mahallawy HS, Kaltenboeck B, Wang C (2014) First report of Babesia gibsoni in Central America and survey for vector-borne infections in dogs from Nicaragua. Parasit Vector 7:126CrossRefGoogle Scholar
  81. Wormser GP, Villafuerte P, Nolan SM, Wang G, Lerner RG, Saetre KL, Maria MH, Branda JA (2015) Neutropenia in congenital and adult babesiosis. Am J Clin Pathol 144:94–96CrossRefGoogle Scholar
  82. Yao D, Jiang J, Yu Z, Yao D, Yang D, Zhao Y (2014) Canine babesiosis in China caused by Babesia gibsoni: a molecular approach. Iran J Parasitol 9(2):163–168Google Scholar
  83. Zamokas G, Grigonis A, Karvelienė B, Daunoras G, Babickaitė L, Šapalienė I (2014) Importance of haematological changes in diagnosing canine babesiosis. Vet Med Zoot 67(89):1392–2130Google Scholar
  84. Zhang Y, Han P, Wu N, He B, Lu Y, Li S, Liu Y, Zhao S, Liu L, Li Y (2011) Amelioration of lipid abnormalities by α-lipoic acid through antioxidative and anti-inflammatory effects. Obesity 19:1647–1653CrossRefGoogle Scholar
  85. Zhang X, Zhang W, Feng L (2014) Prognostic significance of neutrophil lymphocyte ratio in patients with gastric cancer: a meta-analysis. PLoS One 9(11):e111906. CrossRefGoogle Scholar
  86. Zvorc Z, Baric R, Kules J, Mrljak V (2010) Erythrocyte and platelet indices in babesiosis of dogs. Vet Arhiv 80:259–267Google Scholar
  87. Zygner W, Gójska-Zygner O, Bąska P, Długosz E (2015) Low T3 syndrome in canine babesiosis associated with increased serum IL-6 concentration and azotaemia. Vet Parasitol 211(1–2):23–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Veterinary Medicine, Faculty of Veterinary MedicineAhmadu Bello UniversityZariaNigeria
  2. 2.Department of Veterinary Physiology, Faculty of Veterinary MedicineAhmadu Bello UniversityZariaNigeria
  3. 3.Department of Veterinary Parasitology and Entomology, Faculty of Veterinary MedicineAhmadu Bello UniversityZariaNigeria
  4. 4.Department of Biochemistry, Faculty of ScienceAhmadu Bello UniversityZariaNigeria

Personalised recommendations