Skip to main content

Advertisement

Log in

The beneficial effect of equine chorionic gonadotropin hormone (eCG) on the in vitro co-culture of bovine spermatogonial stem cell with Sertoli cells

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Spermatogenesis is a complex developmental process that originates from spermatogonia stem cell. This process consists of sequential, highly organized steps of cell proliferation and differentiation resulting in the generation of functional spermatozoa. Many growth factors, hormones, and cell interactions of germ cells with Sertoli cells regulate these processes, and the failure of any of the processes can lead to male infertility The aim of the present study was to determine the effects of equine chorionic gonadotropin on spermatogonial stem cell colony formation and differentiation after in vitro co-culture with Sertoli cells. In this experimental study, Sertoli and spermatogonial stem cells were isolated from 3- to 5-month-old calves. Co-cultured Sertoli and spermatogonial stem cells were treated with equine chorionic gonadotropin in treatment groups before colony assay. The present study showed that equine chorionic gonadotropin increase colony number and decrease colony diameter. Equine chorionic gonadotropin can induce proliferative pathway and inhibit differentiation process in spermatogonia stem cell co-culture with Sertoli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alomar M, Zarkawi M, Alzoabi MA (2018) Analysis of Awassi sperm motility in two media at different evels of temperature, pH and osmolality. Iran J App Anim Sci 8:431–438

    Google Scholar 

  • Anjamrooz SH, Movahedin M, Tiraihi T, Mowla SJ (2006) In vitro effects of epidermal growth factor, follicle stimulating hormone and testosterone on mouse spermatogonial cell colony formation. Reprod Fertil Dev 18:709–720

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Folmer J, Wright WW, Zirkin BR (2003) Isolation of sertoli cells from adult rat testes: an approach to ex vivo studies of sertoli cell function. Biol Reprod 68:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Baarends W, Grootegoed J (1999) Molecular biology of male gametogenesis. Molecular biology in reproductive medicine New York, USA: parthenon publishing group 271-295

  • De Franca LR, Silva VA, Chiarini-Garcia H, Garcia SK, Debeljuk L (2000) Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biol Reprod 63:1629–1636

    Article  CAS  PubMed  Google Scholar 

  • De Franca LR, Avelar GF, Almeida FL (2005) Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenol 63:300–318

    Article  Google Scholar 

  • Dym M, Cavicchia JC (1997) Further observations on the blood-testis barrier in monkeys. Biol Reprod 17:390–403

    Article  Google Scholar 

  • Enders GC, May JJ II (1994) Developmentally regulated expression of a mouse germ cell nuclear antigen examined from embryonic day 11 to adult in male and female mice. Dev Biol 163:331–340

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F, Matthijs-Rijsenbilt JJ, Ouden KD, Creemers LB, Woelders H, de Rooij DG (2002) Development of a cryopreservation protocol for type a spermatogonia. J Androl 23:537–545

    CAS  PubMed  Google Scholar 

  • Kojima Y, Kominami K, Dohmae K, Nonomura N, Miki T, Okuyama A (1997) Cessation of spermatogenesis in juvenile spermatogonial depletion (jsd/jsd) mice. Int J Urol 4:500–507

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101:16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar TR (2005) What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 130:293–302

    Article  CAS  PubMed  Google Scholar 

  • Lamb DJ, Spotts GS, Shubhada S, Baker KR (1991) Partial characterization of a unique mitogenic activity secreted by rat Sertoli cells. Mol Cell Endocrinol 79:1–12

    Article  CAS  PubMed  Google Scholar 

  • McLean D, Russell LD, Griswold MD (2002) Biological activity and enrichment of spermatogonial stem cells in vitamin a-deficient and hyperthermia-exposed testes from mice based on colonization following germ cell transplantation. Biol Reprod 66:1374–1379

    Article  CAS  PubMed  Google Scholar 

  • Meehan T, Schlatt S, O'Bryan MK, de Kretser DM, Loveland KL (2000) Regulation of germ cell and Sertoli cell development by activin, follistatin, and FSH. Dev Biol 220:225–237

    Article  CAS  PubMed  Google Scholar 

  • Pierce JG, Parsons TF (1981) Glycoprotein hormones: structure and function. Annu Rev Biochem 50:465–495

    Article  CAS  Google Scholar 

  • Tajik P, Sani RN, Moezifar M, Yousefi M, Movahedin M, Qasemi-Panahi B (2014) Effect of follicle-stimulating hormone and testosterone on colony formation of bovine spermatogonial stem cell. Comp Clin Pathol 23:901–906

    Article  CAS  Google Scholar 

  • van Pelt AM, Morena AR, van Dissel-Emiliani FM, Boitani C, Gaemers IC, de Rooij DG (1996) Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod 55:439–444

    Article  PubMed  Google Scholar 

  • Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S, Kunisada T, Fujimoto T (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113:689–699

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants to the second author from the Semnan University for DVM thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Narenji Sani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research was conducted in accordance the National Health guidelines, USA, and were approved by the Animal Research Ethical Committee of Semnan University of Faculty of veterinary science.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashfi, A., Sani, R.N. & Ahmadi-hamedani, M. The beneficial effect of equine chorionic gonadotropin hormone (eCG) on the in vitro co-culture of bovine spermatogonial stem cell with Sertoli cells. Comp Clin Pathol 28, 701–704 (2019). https://doi.org/10.1007/s00580-019-02944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-019-02944-9

Keywords

Navigation