Skip to main content
Log in

Effects of dietary supplementation of bentonite and yeast cell wall on serum blood urea nitrogen, triglyceride, alkaline phosphatase, and calcium in high-producing dairy cattle during the transition period

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the effects of dietary supplementation of endotoxins binders (Saccharomyces cerevisiae cell wall (SCW) and bentonite (BEN)) on blood urea nitrogen (BUN), triglyceride, alkaline phosphates (ALP), and calcium (Ca) in high-producing dairy cows during the transition period. Twenty-four Holstein dairy cows (n = 6, average milk production = 35.8 ± 1.6 kg/day, body weight (BW) = 567.5 ± 40.3 kg, body condition score (BCS) = 3.5 ± 0.26 out of 5) were assigned in a completely randomized design, to the following treatments: (1) basal diet (BD), (2) BD + SCW, (3) BD + BEN, and (4) BD + SCW + BEN. Blood samples were taken 4, 3, and 1 weeks before and 1and 3 weeks after parturition. Serum concentrations of BUN, triglyceride, ALP, and Ca were measured. It was observed that, BUN concentration was lower in SCW + BEN group, probably because of the better utilization of NH3-N and better stimulation for ruminal microbial protein synthesis. Triglyceride plasma concentration was lower in the control group, which might be due to decreased lipolysis and a lower pH. The treatment groups showed no effect for Ca at any time point. Serum ALP concentration was within references range. In conclusion, lower BUN concentration could be a result of better stimulation of ruminal microbial protein synthesis in the treatment groups and also due to lower triglyceride in control group, which might be result of lower pH in the rumen, we suggest that endotoxins binders (especially combined feeding of endotoxin binders) can modulate rumen function by optimizing the rumen pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams BG, Parks LW (1967) A water-soluble form of ergosterol and cholesterol for physiological studies. Biochem Biophys Res Commun 28:490–494

    Article  CAS  PubMed  Google Scholar 

  • Ainmalamali S, Kindahl H, Fredriksson G (1992) The role of endotoxins in induced ruminal acidosis in calves. Acta Vet Scand 33:117–127

    Google Scholar 

  • Ametaj BN, Emmanuel DGV, Zebeli Q, Dunn SM (2009) Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows. J Dairy Sci 92:1084–1091. https://doi.org/10.3168/jds.2008-1465

    Article  CAS  PubMed  Google Scholar 

  • Atasoglu C, Newbold J, Wallace J (2001) Incorporation of [15N] Ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17. Appl Environ Microbiol:2819–2822. https://doi.org/10.1128/AEM.67.6.2819-2822.2001

  • Celyk K, Denly M, Savas T (2003) Reduction of toxic effects of aflatoxin by using baker yeast (Saccharomyces cerevisiae) in growing broiler chicken diets. Rev Bras Zootec 32:615–619

    Article  Google Scholar 

  • Chaucheyras-Durand F, Walker ND, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145:5–26. https://doi.org/10.1016/j.anifeedsci.2007.04.019

    Article  CAS  Google Scholar 

  • Chiquette J, Allison MJ, Rasmussen MA (2008) Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. J Dairy Sci 91:3536–3543. https://doi.org/10.3168/jds.2007-0849

    Article  CAS  Google Scholar 

  • Chiquette J, Allison MJ, Rasmussen M (2012) Use of Prevotella bryantii 25A and a commercial DFM during subacute acidosis challenge in mid-lactation dairy cows. J Dairy Sci 95:5985–5995. https://doi.org/10.3168/jds.2012-5511

    Article  CAS  PubMed  Google Scholar 

  • Chiquette J, Lagrost J, Girard CL, Talbot G, Li S, Plaizier JC, Hindrichsen IK (2015) Efficacy of the direct-fed microbial Enterococcus faecium alone or in combination with Saccharomyces cerevisiae or Lactococcus lactis during induced sub-acute ruminal acidosis. J Dairy Sci 98:190–203. https://doi.org/10.3168/jds.2014-8219

    Article  CAS  PubMed  Google Scholar 

  • Coeuret V, Gueguen M, Vernoux JP (2004) Numbers and strains of lactobacilli in some probiotic products. Int J Food Microbiol 97:147–156. https://doi.org/10.1016/j.ijfoodmicro.2004.04.015

    Article  PubMed  Google Scholar 

  • Constable PD, Hinchcliff KW, Done SH, Grünberg W (2017) Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs, and goats. Veterinary Medicine, 11th edn. Elsevier Ltd., p 2217–2219

  • Danscher AM, Li S, Andersen PH, Khafipour E, Kristensen NB, Plaizier JC (2015) Indicators of induced sub-acute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet Scand 57:39. https://doi.org/10.1186/s13028-015-0128-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditter B, Urbaschek R, Urbaschek B (1983) Ability of various adsorbents to bind endotoxins in vitro and to prevent orally induced endotoxemia in mice. Gastroenterology 84:1547–1552

    Article  CAS  Google Scholar 

  • Dong GZ, Liu SM, Wu YX, Lei CL, Zhou J, Zhang S (2011) Diet induced bacterial immunogens in the gastrointestinal tract of dairy cows: impacts on immunity and metabolism. Acta Vet Scand 53:1–7. https://doi.org/10.1186/1751-0147-53-48

    Article  CAS  Google Scholar 

  • Fairfield AM, Plaizier JC, Duffield TF, Lindinger MI, Bagg R, Dick P, McBride BW (2007) Effects of prepartum administration of a monensin controlled release capsule on rumen pH, feed intake, and milk production of transition dairy cows. J Dairy Sci 90:937–945. https://doi.org/10.3168/jds.S0022-0302(07)71577-1

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez LA, Manteca X, Calsamiglia S, Schwartzkopf-Genswein KS, Ferret A (2012) Ruminal acidosis in feedlot cattle: interplay between feed ingredients, rumen function and feeding behavior (a review). Anim Feed Sci Technol 172:66–79

    Article  CAS  Google Scholar 

  • Gozho GN, Plaizier JC, Krause DO, Kennedy AD, Wittenberg KM (2005) Sub-acute ruminal acidosis induces ruminal lipopolysaccharides endotoxin release and triggers an inflammatory response. J Dairy Sci 88:1399–1403. https://doi.org/10.3168/jds.S0022-0302(07)71569-2

    Article  CAS  PubMed  Google Scholar 

  • Gozho GN, Krause DO, Plaizier JC (2006) Rumen lipopolysaccharide and inflammation during grain adaptation and sub-acute ruminal acidosis in dairy cows. J Dairy Sci 89:4404–4413. https://doi.org/10.3168/jds.S0022-0302(07)71569-2

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Xu X, Zou Y, Yang Z, Li Y, Cao Z (2013) Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with sub-acute ruminal acidosis and its regulation with pelleted beet pulp. J Anim Sci Biotechnol 4:31. https://doi.org/10.1186/2049-1891-4-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassen A, Jamoussi F, Saidi N, Mabrouki Z, Fakhfakh E (2003) Microbial and cooper adsorption by smectitic clay – an experimental study. Environ Technol 24:1117–1127. https://doi.org/10.1080/09593330309385652

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim IK, Shareef AM, Al-Joubory KM (2000) Ameliorative effects of sodium bentonite on phagocytosis and Newcastle disease antibody formation in broiler chickens during aflatoxicosis. Res Vet Sci 69:119–122. https://doi.org/10.1053/rvsc.2000.0390

    Article  CAS  PubMed  Google Scholar 

  • Iranian Council of Animal Care (1995) Guide to the care and use of experimental animals vol. 1. Isfahan University of Technology, Isfahan

    Google Scholar 

  • Jonker JS, Kohn RA, Erdman RA (1998) Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J Dairy Sci 81:2681–2692

    Article  CAS  PubMed  Google Scholar 

  • Kalaitzakis M, Roubies N, Panousis N, Pourliotis K, Kaldrymidou E, Karatzias H (2007) Clinicopathologic evaluation of hepatic lipidosis in periparturient dairy cattle. J Vet Intern Med 21:835–845. https://doi.org/10.1186/1751-0147-55-48

    Article  PubMed  Google Scholar 

  • Katsumata H, Kaneco S, Inomata K, Itoh K, Funasaka K, Masuyama K, Suzuki T, Ohta K (2003) Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. J Environ Manag 69:187–191

    Article  Google Scholar 

  • Khafipour E, Krause DO, Plaizier JC (2009) A grain-based sub-acute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 92:1060–1070. https://doi.org/10.3168/jds.2008-1389

    Article  CAS  PubMed  Google Scholar 

  • Kleen JL, Hooijer GA, Rehage J, Noordhuizen JP (2003) Subacute ruminal acidosis (SARA): a review. J Vet Med A Physiol Pathol Clin Med 50:406–414

    Article  CAS  PubMed  Google Scholar 

  • Kleen JL, Upgang L, Rehage J (2013) Prevalence and consequences of sub-acute ruminal acidosis in German dairy herds. Acta Vet Scand 55:1–6. https://doi.org/10.1186/1751-0147-55-48

    Article  Google Scholar 

  • Lei CL, Dong GZ, Jin L, Zhang S, Zhou J (2013) Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livest Sci J 158:57–63. https://doi.org/10.1016/j.livsci.2013.08.019

    Article  Google Scholar 

  • Malekkhani M, Tahmasbi AM, Naserian AA, Danesh-mesgaran M, Kleen JL, Alzahal O, Ghafari MH (2016) Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim Feed Sci Technol 213:29–43. https://doi.org/10.1016/j.anifeedsci.2015.12.018

    Article  CAS  Google Scholar 

  • Nozad S, Gholi-Ramin A, Moghadam G, Asri-Rezaiy S, Babapour A, Ramin S (2012) Relationship between blood urea, protein, creatinine, triglycerides and macro-mineral concentrations with the quality and quantity of milk in dairy Holstein cows. Vet Res Forum 3(1):55–59

    PubMed  PubMed Central  Google Scholar 

  • NRC (2001) Nutrient requirements of dairy cattle, 7th edn. Natl Acad Sci rev, Washington DC

    Google Scholar 

  • Owens FN, Secrist DS, Hill WJ, Gill DR (1998) Acidosis in cattle—a review. J Anim Sci 76:275–286

    Article  CAS  PubMed  Google Scholar 

  • Patra RC, lal SB, Swarup D (1996) Biochemical profile of rumen liquor, blood and urine in experimental acidosis in sheep. Small Rumin Res 19:177–180

    Article  Google Scholar 

  • Penner GB, Beauchemin KA, Mutsvangwa T (2007) Severity of ruminal acidosis in primiparous Holstein cows during the periparturient period. J Dairy Sci 90:365–375. https://doi.org/10.3168/jds.S0022-0302(07)72638-3

    Article  CAS  PubMed  Google Scholar 

  • Phillips TD, Lemke SL, Grant PG (2002) Characterization of clay-based enterosorbents for prevention of aflatoxicosis. Adv Exp Med Biol 504:157–171

    Article  CAS  PubMed  Google Scholar 

  • Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Sub-acute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 176:21–31. https://doi.org/10.1016/j.tvjl.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  • Plaizier JC, Khafipour E, Li S, Gozho GN, Krause DO (2012) Sub-acute ruminal acidosis (SARA), endotoxins and health consequences. Anim Feed Sci Technol 172:9–21. https://doi.org/10.1016/j.als.2016.11.006

    Article  CAS  Google Scholar 

  • Pulsipher GD, Galyean ML, Hallford DM, Smith GS, Kiehl DE (1994) Effects of graded levels of bentonite on serum clinical profiles, metabolic hormones, and serum swainsonine concentrations in lamb fed locoweed (Oxytropis sericea). J Anim Sci 72:1561–1569

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Prasad MC, Nem S (1992) Clinico-biochemical studies on induced pregnancy toxemia in sheep. Ind J Vet Pathol 16:85–90

    Google Scholar 

  • Steele MA, Croom J, Kahler M, AlZahal O, Hook SE, Plaizier K, McBride BW (2011) Bovine rumen epithelium undergoes rapid structural adaptations during grain induced subacute ruminal acidosis. Am J Phys Regul Integr Comp Phys 300:R1515–R1523. https://doi.org/10.1152/ajpregu.00120.2010

    Article  CAS  Google Scholar 

  • Stone WC (2004) Nutritional approaches to minimize sub-acute ruminal acidosis and laminitis in dairy cattle. J Dairy Sci 87:E13–E26

    Article  Google Scholar 

  • Tajik J, Nazifi S (2011) Diagnosis of sub-acute ruminal acidosis: a review. Asian J Anim Sci 5:80–90. https://doi.org/10.3923/ajas.2011.80.90

    Article  Google Scholar 

  • Tajik J, Nadalian MG, Raoofi A, Mohammadi GR, Bahonar AR (2009) Prevalence of sub-acute ruminal acidosis in some dairy herds of Khorasan Razavi province, northeast of Iran. J Vet Res 10:28–32

    Google Scholar 

  • Thompson ED, Knights BA, Parks LW (1973) Identification and properties of a sterol-binding polysaccharide isolated from Saccharomyces cerevisiae. Biochem Biophys Acta 304:132–141

    Article  CAS  PubMed  Google Scholar 

  • Trckova M, Matlova L, Dvorska L, Pavlic I (2004) Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks. Vet Med – Czech 49(10):389–399

    Article  CAS  Google Scholar 

  • Van Nevel CJ, Demeyer DI (1996) Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reprod Nutr Dev 36:53–63

    Article  PubMed  Google Scholar 

  • Wenz JR, Barrington GM, Garry FB, McSweeney KD, Dinsmore RP, Goodell G, Callan RJ (2001) Bacteremia associated with naturally occurring acute coliform mastitis in dairy cows. J Am Vet Med Assoc 219:976–981

    Article  CAS  PubMed  Google Scholar 

  • Zebeli Q, Ametaj BN (2009) Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. J Dairy Sci 92:3800–3809. https://doi.org/10.2527/jas.2009-2203.

    Article  CAS  PubMed  Google Scholar 

  • Zebeli Q, Dunn SM, Ametaj BN (2010) Strong associations among rumen endotoxin and acute phase proteins with plasma minerals in lactating cows fed graded amounts of concentrate. J Anim Sci 88:1545–1553. https://doi.org/10.2527/jas.2009-2203.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financed by PhD student project grant by School of Veterinary Medicine, Shiraz University, Shiraz, Iran. The authors would like to thank the Moghufat Malek industry for provision of cows especially Mr. Miri, Mr. Naghavi, and Mr.Ershadi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hajimohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of animal right

All animals were treated in accordance with the regulations on the guidelines of the Iranian Council of Animal Care (1995), and the experiment was approved by the Institutional Animal Care Committee for Animals Used in Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, S.A., Pourjafar, M., Hajimohammadi, A. et al. Effects of dietary supplementation of bentonite and yeast cell wall on serum blood urea nitrogen, triglyceride, alkaline phosphatase, and calcium in high-producing dairy cattle during the transition period. Comp Clin Pathol 28, 419–425 (2019). https://doi.org/10.1007/s00580-018-2849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-018-2849-4

Keywords

Navigation