Skip to main content
Log in

Oxidative-protective effects of Tinospora cordifolia extract on plasma and spleen cells after experimental ochratoxicosis

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The importance of Tinospora cordifolia extract was investigated for its possible protective effect in spleen and blood in male ICR albino mice against ochratoxin A-induced toxicity (OTA). OTA instigates oxidative changes and results in the overproduction of free radicals, changes in body/organ weight, and the food consumption and is considered as a risk factor for animals and humans. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and consequent lipid-peroxidative damages caused by OTA are considered to be the main mechanisms leading to oxidative stress disorders in organs and blood. TC oral administrations prevent the physiological status of animals and improve the biochemical parameters of the urine and plasma. Moreover, EPR analysis show that TC administration decreased Asc• and NO• radicals and ROS productions in the spleen and serum, even in OTA-treated group. The significant decrease in MDA formation in the spleen and serum and the increased expression of SOD activity in TC and TC + OTA groups confirm the positive modulatory effect of TC extract on the cellular antioxidant system. TC and TC + OTA treatment caused significant reduction of genotoxic potential (8-OHdG) of OTA, followed by a decreased oxidative activity and gradual recovery of ROS-induced DNA damage. The results suggested that TC extract protect against OTA-induced oxidative disorders and other abnormalities. As typical antioxidant TC could protect splenic macrophages and regain intracellular antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal A, Malini S, Bairy KL, Rao MS (2002) Effect of Tinospora cordifolia on learning and memory in normal and memory deficit rats. Indian J Pharm 34(5):339–349

    Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1993) Ascorbate free-radical as a marker of oxidative stress––an EPR study. Free Radic Biol Med 14(1):49–55

    Article  CAS  Google Scholar 

  • Cavin C, Delatour T, Marin-Kuan M, Holzhäuser D, Higgins L, Bezençon C, Guignard G, Junod S, Richoz-Payot J, Gremaud E, Hayes JD, Nestler S, Mantle P, Schilter B (2007) Reduction in antioxidant defenses may contribute to ochratoxin a toxicity and carcinogenicity. Toxicol Sci 96:30–39

    Article  CAS  Google Scholar 

  • Chakraborty B, Sengupta M (2012) Supporting the immune system through functional modulation of carbon tetrachloride intoxicated splenic macrophages by administering Tinospora cordifolia. J Appl Pharm Sci 02(07):117–124

    Google Scholar 

  • Creppy EE, Kane A, Dirheimer G, Lafarge-Frayssinet C, Mousset S, Frayssinet C (1985) Genotoxicity of ochratoxin A in mice: DNA single-strand break evaluation in spleen, liver and kidney. Toxicol Lett 28(1):29–35

    Article  CAS  Google Scholar 

  • Denli M, Perez JF (2010) Ochratoxins in feed, a risk for animal and human health: control strategies. Toxins 2(5):1065–1077

    Article  CAS  Google Scholar 

  • Elaroussi MA, Mohamed FR, El Barkouky EM et al (2006) Experimental ochratoxicosis in broiler chickens. Avian Pathol 35(4):263–269

    Article  CAS  Google Scholar 

  • Gacche RN, Dhole NA (2011) Profile of aldose reductase inhibition, anti-cataract and free radical scavenging activity of selected medicinal plants: an attempt to standardize the botanicals for amelioration of diabetes complications. Food Chem Toxicol 49(8):1806–1813

    Article  CAS  Google Scholar 

  • Gupta R, Sharma V (2011) Ameliorative effects of Tinospora cordifolia root extract on histopathological and biochemical changes induced by aflatoxin-b (1) in mice kidney. Toxicol Int 18(2):94–98

    Article  Google Scholar 

  • Ivanova D, Gerova D, Chervenkov T et al (2005) Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol 97(1–2):145–150

    Article  Google Scholar 

  • Jagetia GC, Baliga MS (2004) The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. J Med Food 7(3):343–348

    Article  Google Scholar 

  • Joshi G, Kaur R (2016) Tinospora cordifolia: a phytopharmacological review. Int J Pharm Sci Res 7(3):890

    CAS  Google Scholar 

  • Kapil A, Sharma S (1997) Immunopotentiating compounds from Tinospora cordifolia. J Ethnopharmacol 58(2):89–95

    Article  CAS  Google Scholar 

  • Khan S, Martin M, Bartsch B, Rahimtula AD (1989) Perturbation of liver microsomal calcium homeostasis by ochratoxin A. Biochem Pharmacol 38(1):67–72

    Article  CAS  Google Scholar 

  • Kőszegi T, Poór M (2016) Ochratoxin a: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins 8(4):111–117

    Article  Google Scholar 

  • Kuroda K, Hibi D, Ishii Y, Takasu S, Kijima A, Matsushita K, Masumura KI, Watanabe M, Sugita-Konishi Y, Sakai H, Yanai T, Nohmi T, Ogawa K, Umemura T (2014) Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of GPT delta rats. Mutagen 29(1):27–36

    Article  CAS  Google Scholar 

  • Mantle PG (2008) Interpretation of the pharmacokinetics of ochratoxin A in blood plasma of rats, during and after acute or chronic ingestion. Food Chem Toxicol 46(5):1808–1816

    Article  CAS  Google Scholar 

  • Milićević DR, Jurić VB, Stefanović SM, Vesković-Moračanin SM, Janković SD (2009) Evaluation and validation of two different chromatographic methods (HPLC and LC-MS/MS) for the determination and confirmation of ochratoxin A in pig tissues. J Environ Sci Health B 44(8):781–787

    Article  Google Scholar 

  • Omar RF, Hasinoff BB, Mejilla F, Rahimtula AD (1990) Mechanism of ochratoxin A stimulated lipid peroxidation. Biochem Pharmacol 40:1183–1191

    Article  CAS  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22(1):18–35

    Article  CAS  Google Scholar 

  • Padma VV, Baskaran R, Divya S, Priya LB, Saranya S (2016) Modulatory effect of Tinospora cordifolia extract on Cd-induced oxidative stress in Wistar rats. Integr Med Res 5(1):48–55

    Article  Google Scholar 

  • Patel MB, Mishra S (2011) Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine 18(12):1045–1052

    Article  CAS  Google Scholar 

  • Plaser ZA, Cushman LL, Jonson BC (1966) Estimation of product of lipid peroxidation (Malonyl Dialdehyde) in biochemical systems. Anal Biochem 16(2):359–364

    Article  Google Scholar 

  • Premanath R, Lakshmidevi N (2010) Studies on anti-oxidant activity of Tinospora cordifolia (Miers.) leaves using in vitro models. J Am Sci 6(10):736–743

    Google Scholar 

  • Rahimtula AD, Bereziat JC, Eussacchini-Griot V et al (1988) Lipid peroxidation as a possible cause of ochratoxin a toxicity. Biochem Pharmacol 37(23):4469–4477

    Article  CAS  Google Scholar 

  • Rawal A, Muddeshwar M, Biswas S (2004) Effect of rubia cordifolia, Fagonia cretica Linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices. Biochem Biophys Res Commun 324(2):588–596

    Article  CAS  Google Scholar 

  • Reddy SS, Ramatholisamma P, Karuna R, Saralakumari D (2009) Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Food Chem Toxicol 47(9):2224–2229

    Article  CAS  Google Scholar 

  • Rutigliano L, Valentini L, Martino NA, Pizzi F, Zanghì A, Dell’Aquila ME, Minervini F (2015) Ochratoxin A at low concentrations inhibits in vitro growth of canine umbilical cord matrix mesenchymal stem cells through oxidative chromatin and DNA damage. Reprod Toxicol 57:121–129

    Article  CAS  Google Scholar 

  • Saad M, Abdel-Fattah SM (2008) A food additive formula to minimize the negative effects due to ingesting aflatoxin(s) contaminated food. J Saudi Soc Food Nutr 3(1):17–31

    Google Scholar 

  • Saha S, Ghosh S (2012) Tinospora cordifolia: one plant, many roles. Anc Sci Life 31(4):151–159

    Article  Google Scholar 

  • Sai KS, Srividya N (2002) Blood glucose lowering effect of the leaves of Tinospora cordifoliaand Sauropus androgynus in diabetic subjects. J Nat Remedies 2:28–32

    Google Scholar 

  • Sangeetha MK, Balaji RHR, Gayathri V et al (2011) Tinospora cordifolia attenuates oxidative stress and distorted carbohydrate metabolism in experimentally induced type 2 diabetes in rats. Nat Med 65(3–4):544–550

    Article  CAS  Google Scholar 

  • Schraufstatter IU, Hyslop PA, Jackson JH, Cochrane CG (1988) Oxidant-induced DNA damage of target cells. J Clin Invest 82(3):1040–1050

    Article  CAS  Google Scholar 

  • Sharma U, Bala M, Kumar N, Singh B, Munshi RK, Bhalerao S (2012) Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol 141(3):918–926

    Article  CAS  Google Scholar 

  • Sharma R, Amin H, Pradeep G, Prajapatia K (2015) Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pac J Trop Biomed 5(1):68–78

    Article  Google Scholar 

  • Shi HH, Sui YX, Wang XR, Luo Y, Ji L (2005) Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comp Biochem Physiol Part C Toxicol Pharmacol 140(1):115–121

    Article  Google Scholar 

  • Shivananjappa MM (2012) Muralidhara abrogation of maternal and fetal oxidative stress in the streptozotocin-induced diabetic rat by dietary supplements of Tinospora cordifolia. Nutrition 28(5):581–587

    Article  CAS  Google Scholar 

  • Singh RP, Banerjee S, Kumar PV et al (2006) Tinospora cordifolia induces enzymes of carcinogen/drug metabolism and antioxidant system, and inhibits lipid peroxidation in mice. Phytomed 13(1):74–84

    Article  CAS  Google Scholar 

  • Singh L, Tyagi S, Rizvi MA et al (2007) Effect of Tinospora cordifolia on gamma ray-induced perturbations in macrophages and splenocytes. J Radiat Res 48(4):305–315

    Article  CAS  Google Scholar 

  • Sorrenti V, di Giacomo C, Acquaviva R, Barbagallo I, Bognanno M, Galvano F (2013) Toxicity of ochratoxin A and its modulation by antioxidants: a review. Toxins 5(10):1742–1766

    Article  Google Scholar 

  • Spasojevic I, Miriyala S, Tovmasyan A, Salvemini D, Fan P, Vujaskovic Z, Batinic-Haberle I, Clair DKS (2011) Lipophilicity of Mn (III) N-alkylpyridylporphyrins dominates their accumulation within mitochondria and therefore in vivo efficacy: a mouse study. Free Radic Biol Med 51:S98–S99

    Article  Google Scholar 

  • Stanely P, Prince M, Menon VP (2000) Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 70(1):9–15

    Article  CAS  Google Scholar 

  • Stanely M, Prince P, Menon VP (2003) Hypoglycaemic and hypolipidaemic action of alcohol extract of Tinospora cordifolia roots in chemical induced diabetes in rats. Phytother Res 17(4):410–413

    Article  Google Scholar 

  • Stoev SD, Goundasheva D, Mirtcheva T, Mantle P (2000) Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis. Exp Toxicol Pathol 52(4):287–296

    Article  CAS  Google Scholar 

  • Stoev S, Daskalov H, Radicc B, Domijanc AM, Peraicac M (2002) Spontaneous mycotoxic nephropathy in Bulgarian chickens with unclarified mycotoxin aetiology. Vet Res 33:83–93

    Article  Google Scholar 

  • Subramanian M, Chintalwar GJ, Chattopadhyay S (2002) Antioxidant properties of a Tinospora cordifolia polysaccharide against iron-mediated lipid damage and gamma-ray induced protein damage. Redox Rep 7(3):137–143

    Article  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    CAS  PubMed  Google Scholar 

  • Upadhyay AK, Kumar K, Kumar A, Mishra HS (2010) Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi)-validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res 1(2):112–121

    Article  Google Scholar 

  • Upadhyaya R, Sharma V, Anita KV (2011) Assessment of the multifaceted immunomodulatory potential of the aqueous extract of Tinospora cordifolia. Res J Chem Sci 1(6):71–79

    Google Scholar 

  • Wink DA, Hines HB, Cheng RYS, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89(6):873–891

    Article  CAS  Google Scholar 

  • Yabuki M, Kariya S, Ishisaka R, Yasuda T, Yoshioka T, Horton AA, Utsumi K (1999) Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu-Zn-superoxide dismutase and catalase. Free Radic Biol Med 26(3):325–332

    Article  CAS  Google Scholar 

  • Yokoyama K, Hashiba K, Wakabayashi H, Hashimoto K, Satoh K, Kurihara T, Motohashi N, Sakagami H (2004) Inhibition of LPS stimulated NO production in mouse macrophage-like cells by tropolones. Anticancer Res 24(6):3917–3922

    CAS  PubMed  Google Scholar 

  • Yoshioka T, Iwamoto N, Ito K (1996) An application of electron paramagnetic resonance to evaluate nitric oxide and its quenchers. J Am Soc Nephrol 7(6):961–965

    CAS  PubMed  Google Scholar 

  • Zepnik H, Wolfgang V, Dekant W (2003) Toxicokinetics of the mycotoxin ochratoxin A in F 344 rats after oral administration. Toxicol Appl Pharmacol 192(1):36–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the scientific project no. 6/2015 of Medical Faculty, Trakia University, Stara Zagora, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanka Karamalakova.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed (Directive 2010/63/EU on the protection of animals used for experimental and other scientific work, and approved by the Ethical Committee for Animals of BABH and Trakia University, Stara Zagora, Bulgaria (131/6000-0333/09.12.2015). This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamalakova, Y., Nikolova, G., Adhikari, M. et al. Oxidative-protective effects of Tinospora cordifolia extract on plasma and spleen cells after experimental ochratoxicosis. Comp Clin Pathol 27, 1487–1495 (2018). https://doi.org/10.1007/s00580-018-2761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-018-2761-y

Keywords

Navigation