Advertisement

Comparative Clinical Pathology

, Volume 27, Issue 5, pp 1321–1325 | Cite as

Calculation of effective dose fifty (ED50) of antivenom for American pit viper envenomation

  • Saganuwan Alhaji Saganuwan
Original Article
  • 41 Downloads

Abstract

The use of conventional approved snake antivenom is the most reliable snake envenomotherapy at the moment. However, because of post-treatment hypersensitivity reactions sometimes caused by large doses of snake antivenoms, the treatment of snake poisoning needs to be reviewed. The effective dose fifty (ED50) of snake antivenom was calculated for 11 American pit viper envenomation as reported by Consroe et al. Four different ED50 formulas were used to determine effective dose fifty of snake antivenom against LD50 of the snake venoms using intravenous route. The findings revealed that snake envenomotherapy is in monotonic dose-response fashion with each formular producing ED50 value for specific snake. The difference in values may be due to species of snakes and the types of ED50 formula used. All the ED50 formulas with the LD50 as numerator yielded higher effective therapeutic dose of snake antivenoms and corresponding higher LD50 values of snake venoms. The lower the denominator, the lower the LD50 and the ED50 value, and the lower the chance of hypersensitivity reaction, but the higher may be the chance of the snake antivenom failure. Therefore, Saganuwan’s formula \( \left({\mathrm{LD}}_{50}=\frac{ED_{50}}{3}\ x\ Wa\ x\ {10}^{-4}\right) \), whereas Wa is weight of animal, could produce effective envenometherapy with low chance of hypersensitivity reactions.

Keywords

Median lethal dose Effective dose fifty Snake antivenom Snake venom Hypersensitivity reaction 

References

  1. Abubakar IS (2010) Randomized controlled double-blind non-infirmity trial of two antivenins for saw-scaled or carpet viper (Eschris ocellatus) envenoms in Nigeria. Plos Negl Trop Dis 4:e767CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguilar I, Sanches EE, Giron ME, Estrella A, Guerrero B, Rodriquez- Acosta FL (2014) Coral snake antivenom produced in chickens (Gallus domesticus). Rev Inst Med Trop Sao Paulo 56(1):61–66CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen GE, Brown GA, Buckley NA (2012) Clinical effects and antivenom dosing in brown snake (pseudonaja spp.) envenoming—Australian snakebite project (ASP-14). Plos One 7(12):1CrossRefGoogle Scholar
  4. Bieber AL (1979) Metal and non-protein constituents in snake venom. In: Lee Y (ed) Snake venoms: handwork of experimental pharmacology. Springer Verlag, Berlin, pp 295–3006CrossRefGoogle Scholar
  5. Birrell GW, Isbister GK, Masci PP, de Jersey J, Wallis TP (2006) Molecular diversity in venom from the Australian brown snake, Pseudonaja textilis. Mol Cell Proteomics 5:379–389CrossRefPubMedGoogle Scholar
  6. Cham G, Lim F, Earnest A, Gopalakrishnakone (2013) Cross–reactivity against Naja sumatrana (black spitting cobra) envenoming from the Haffkine antivenom in a mouse model. ISRN Toxicol 247645:1–6CrossRefGoogle Scholar
  7. Chippaux JP (1998) Snake bites: appraisal of the global situation. Bull World Health Organ 76:515PubMedPubMedCentralGoogle Scholar
  8. Chippaux JP, Goyfton M (1983) Producers of antivenom sera. Toxin 21:739–752Google Scholar
  9. Chippaux JP, Williams V, White J (1991) Snake venom variability methods of study results and interpretation. Toxicon 29:1279–1303CrossRefPubMedGoogle Scholar
  10. Consroe P, Gerrish K, Egen N, Russel FE (1992) Intravenous dose lethality study of American pit viper venoms in mice using standardized methods. J Wilderness Med 3:162–167CrossRefGoogle Scholar
  11. da Silva WD, Tambourg DV (2011) The humoral immune reprise induced by snake venom toxins. Inflamm Allerg Drug Targets 10(5):343–357CrossRefGoogle Scholar
  12. De Almeda CN, da Silva CL, Couto HP, Escocard, Rade C, da Rocha DG, Sentinelli I (2008) Development of press to produce polyvalent IgG antibodies anti-African snake venom. Toxin 52:293–301Google Scholar
  13. Duan HL, He Q-Y, Zhuu B, Wang WW, Li B, Zhang YZ, Deng Q-P, Zhang Y-F, Yu X-D (2016) Anti-Trimeresurus albolabris efficacy antibodies: preparation, purification and neutralization efficacy. J Venom Anim Toxins Incl Trop Dis 22(23):1–6Google Scholar
  14. Elaraby AK, El-Jakee J, Fahmy A, Kandid MM, Mahmood Z, Saida AA (2016) Lactoferrin: a novel strategy for antivenom therapy. Int J Pharmaceut Res Appl Sci 5(1):50–57Google Scholar
  15. Forge MT, Cardoso JL, Castro SC, Ribeiro L, Franca FO, De Almeria ME, Kanuguti AS, Santo-Martins IS, Santoro ML, Mangeau JE, Warrell D, Theakston R (2014) A radomised blinded comparison of two doses of antivenom in the treatment of Bothrops envenoming in Sao Paulo, Brazil. Tran Roy Soc Trop Med Hyg 89:111–114Google Scholar
  16. Fry BG (2015) Venomous reptiles and their toxins: evolution, pathophysiology and biochemistry. Oxford University press, Oxford, p 546Google Scholar
  17. Fung HT, Yung WH, Crow P, Lam KW, Tan KS, Gironi A, Wong OF, Ades G, Kam CW, Tse ML (2012) Green viper antivenom from Thailand and Agkistrodon halys antivenin from chiria compared in treating Cryptelytoops albolabris envenomation of mice. Hong Kong Med J 18:40–45PubMedGoogle Scholar
  18. Glenn JJ, Straight RC (1978) Mojave rattlesnake (Crotalus scutulatus saitilatus) venom variation in toxicity with geographical origin. Toxicon 16:81–84CrossRefPubMedGoogle Scholar
  19. Gutierrez JM, Lomonte B, Leon G, Rucavado A, Chaves F (2007) Trends in snake bite envenomation therapy; scientific, technological and public health consideration. Curr Pharm Des 13:2935–2950CrossRefPubMedGoogle Scholar
  20. Isbister GK (2010) Antivenom efficacy or effectiveness. The Australian experience. Toxicology 268:148–154CrossRefPubMedGoogle Scholar
  21. Isbister GK, Brown SG, MacDonald E, White J, Alcurine BJ (2008) Current use of Australian snake antivenoms and frequency of immediate-type hypersensitivity reactions and anaphylaxis. Med J Aust 188:473–476PubMedGoogle Scholar
  22. Jelinek GA, Tweed C, Lynch D, Celenza T, Bush B, Michalopoulos N (2004) Cross reactivity between venomous, mildly venomous, and non-venomous snake venoms with the Commonwealth serum laboratories venom detection kit. Emerg Med Australas 16(5-6):384–386Google Scholar
  23. Karam HM, Shaaban EA, Mohamed AF, Zaki HF, Kenawy SA (2015) New approach for improving production of Naja haja snake antirenom. IJSRP 5(3):1–11Google Scholar
  24. Khaddah FZ, Benaiji B, Djebari FL, Chgoury F, Boussadda L, Wadi A, Oukkache N, Ghalim N (2014) Assessment of preclinical efficacy antivenoms produced in rabbit by immunological methods and neutralization assays. J Chem Pharm Res 6(12):446–455Google Scholar
  25. Krishnan LK, Saroja JB, Rajalingam M, John V, Valappil MP, Sreelathal V (2015) Rabbit snake bite model to assess safety and efficacy of anti-viper chicken antibodies (IofG). AJCEM 3(1):32–38CrossRefGoogle Scholar
  26. Larsson A, Sjoquist J (1990) Chicken lgY utilizing evolutionary difference. Comp Immunol Microbial Infect Dis 13:199–201CrossRefGoogle Scholar
  27. Lipman NS, Trudel LJ, Murphy JC, Sahali Y (1992) Comparison of immune response potentiation and in vivo inflammatory effects of freund’s and RIBI adjuvans in mice. Lab Anim Sci 42(2):193–197PubMedGoogle Scholar
  28. Liu S, Dong W, Kong T (2010) Preparation and characterization of immunoglobulin yolk against the venom of Naja naja atra. Indian J Exp Biol 48(8):778–785Google Scholar
  29. Maduwager K, Silva A, Oleavy MA, Hodgson WC, Isbister GK (2016) Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms. Lethality studies or clinically focused in vitro studies. Sci Rep 6:1–11CrossRefGoogle Scholar
  30. Mahan T, Venom P, Rav DN (2013) Norel adjuvants and delivery vehicles for vaccines development: a road ahead. Ind J Med Res 138(5):779–795Google Scholar
  31. Maija DC, Mary VB, Lal AV, Umashankar PR, Krishnan LK (2001) Improved method for isolation of anti-viper venom antibodies from chicken egg yolk. J Biochem Biophys Method 51:129Google Scholar
  32. Meanatchisasudaram S, Parameswari G, Michael A (2009) Studies on antivenom activity of Andrographis paniculata and Aristolochia India plant extracts against Daboia russelli venom by in vivo and in vitro methods. Ind. J Sci Technol 2(4):76–79Google Scholar
  33. Morokuma K, Kobori N, Fukuda T, Takashira M (2011) Experimental manufacture of equine antivenom against yamakagashi (Rabdophis tigrinus). Jpn J Infect Dis 64(5):397–402PubMedGoogle Scholar
  34. Moussa IN, Hassan AM, Alesisa AM, Al Arfaj AA, Salem BMM, Alrejai SA (2012) Protective efficacy of immuniglobulins Y prepared against Cerastes cerastes snake venom in the kingdom of Saudi Arabia. Saudi Med J 33(8):846–851PubMedGoogle Scholar
  35. Okkache N, El Jaoudi R, Ghalion N (2014) Evaluation of the lethal potency of scorpion and snake venoms and comparison between intraperitoneal and intravenous injection routes. Toxin 6:1873–1881CrossRefGoogle Scholar
  36. Oliviera JCR, Montes de Oca H, Duarte MN, Diniz CR, Fortes-Dias CL (2002) Toxicity of South American snakes venoms measured by an invitro cell culture assay. Toxicon 40(3):321–325CrossRefGoogle Scholar
  37. Pakmanee N, Noiphrom J, Kay A, Pormuttakun D, Sakolparp L, Hemmale W, Akesowan S, Khomvilar S, Sitparija V (2013) Comparative abilities of phospholipase A2, and coagulant activities induced by Daboia sianensis venom and their antiinflammatory activity. Sci Asia 39:160–166CrossRefGoogle Scholar
  38. Pawode BS, Sivi NC, Shaikh IK, Waghmare AB, Jalhar ND, Wagh VB, Pawode AS, Waykar IG, Polius-Lele M (2016) Rapid and selective detection of experimental snake envenomation-use of gold nanoparticte based literal flow assay. Toxicon 119(1):299–306CrossRefGoogle Scholar
  39. Riviere G, Choumet V, Audebert F, Saboraud A, Debray M, Scherrmann JN, Bon C (1997) Effect of antivenom on venom pharmakinetics in experimentally envenomed rabbits towards an optimization of antivenom therapy. J Pharmacol Exp Ther 281(1):1PubMedGoogle Scholar
  40. Saganuwan S (2016) The new logarithm for calculation of median lethal dose (LD50) and effective dose fifty (ED50) for Micrarus fulvius venom and antivenom. Int J Vet Sci Med 3(2):1–4CrossRefGoogle Scholar
  41. Segura A, Herreva M, Vargars M (2012) Intra specific variation and cross neutralization by antivenom. Toxicon 59:158–162CrossRefPubMedGoogle Scholar
  42. Shaban EA, Hafez MN (2003) Ability of gamma-irradiated polyvalent antivenom to neutralize the toxicity of the Egyptian cobra (Naja haje) venom. Egypt J Hosp Med 13:1335–1152Google Scholar
  43. Silverstein D, Hopper K, (2008) Small animal critical care medicine, 2nd ed, Elsevier Health Science, Amsterdam, p 1000Google Scholar
  44. Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NG (2014) Pharmacokinetics of the Sri Lankan hump-nosed pit viper intramuscular injections of the venom into rabbits. Toxicon 79:37–44CrossRefPubMedGoogle Scholar
  45. Tan C, Tan NH, Tan KY, Kong KO (2015) Antivenom cross-neutralization of the venoms of Hydrophis schistosus and hydrophis curtis, two common sea snakes in Malaysian waters. Toxin 7:572–581CrossRefGoogle Scholar
  46. WHO (1971). Requirements for snake antivenous: requirements for biological substances, No 21. WHO Technical Report Section 463: 27–44Google Scholar
  47. Yeung JM, Little M, Murray LM, Jelinek GA, Daly FFS (2004) Antivenom dosing in 35 patients with severe brown snake (Pseudonaja) envenoming in Westerrn Australia over 10 years. Med J Aust 181:703–705PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Veterinary Physiology, Pharmacology and Biochemistry, College of Veterinary MedicineUniversity of AgricultureMakurdiNigeria

Personalised recommendations