Skip to main content

Advertisement

Log in

Hematological and iron-related parameters in a dual-purpose local cattle breed compared to the specialized Italian Friesian breed during transition and lactation periods

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Cattle genetic selection has resulted in cows more predisposed to physiological diseases and immunological disorders. The aim of this study was to compare hematological and iron-related parameters during transition and lactation between the dual-purpose local cattle breed Modenese (MO) and the Italian Friesian (IF), housed together under identical conditions of feeding and management. Blood samples from 25 pluriparous lactating cows, 11 MO and 14 IF, were collected at different physiological status: ante-partum (a.p.), early post-partum (p.p.), and lactation. Significant differences were observed during all three periods between MO and IF cows for mean corpuscular volume (MCV), platelets (PLT), and mean platelet volume (MPV). In the a.p. period, a breed effect was observed for neutrophil (NEU) count, monocyte (MON) percent, mean corpuscular hemoglobin (MCH), and unsaturated iron-binding capacity (UIBC); on the contrary, a trend (p < 0.10) was observed for white blood cell (WBC) count, NEU to lymphocyte (LYM) ratio, and mean corpuscular hemoglobin concentration (MCHC). During the early p.p., count and percent of both NEU and MON, so as MCHC, were significantly different between breeds. During lactation, differences were observed only for basophil (BAS) count and percent, hemoglobin (HGB), hematocrit (HCT), and platelet distribution width (PDW). Overall, MO cows showed lower impairment of the immune and innate host resistance mechanisms than IF cows during transition, confirming the importance of genetic background (breed) for hematological parameters. These results could be considered to improve the interest in the conservation of animal genetic resources and for the valorization of local cattle breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeni F, Petrera F, Capelletti M, Dal Prà A, Bontempo L, Tonon A, Camin F (2015) Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage. PLoS One 10(5):e0127391. https://doi.org/10.1371/journal.pone.0127391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adili N, Melizi M, Belabbas H, and Achouri A (2014) Preliminary study of the influence of red blood cells size on the determinism of the breed in cattle. Vet Med Int 429495. https://doi.org/10.1155/2014/429495

  • Anderson BH, Watson DL, Colditz IG (1999) The effect of dexamethasone on some immunological parameters in cattle. Vet Res Commun 23(7):399–413

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DD, Kauf ACW, Paape MJ, Springer HR, Goff JP (2008) Comparison of Holstein and Jersey innate immune responses to Escherichia coli intrammamary infection. J Dairy Sci 91(6):2225–2235. https://doi.org/10.3168/jds.2008-1013

    Article  PubMed  CAS  Google Scholar 

  • Baydar E, Dabak M (2014) Serum iron as an indicator of acute inflammation in cattle. J Dairy Sci 97(1):222–228. https://doi.org/10.3168/jds.2013-6939

    Article  PubMed  CAS  Google Scholar 

  • Bedenicki M, Potocnjak D, Harapin I, Radisic B, Samardzija M, Kreszinger M, Zubcic D, Djuricic D, Bedrica L (2014) Haematological and biochemical parameters in the blood of an indigenous Croatian breed—Istrian cattle. Archiv Tierzucht 57(18):1–7. https://doi.org/10.7482/0003-9438-57-018

    Article  CAS  Google Scholar 

  • Bonizzi L, Menandro ML, Pasotto D, Lauzi S (2003) Transition cow: non-specific immune response. Vet Res Commun 27(Suppl. 1):137–142

    Article  PubMed  Google Scholar 

  • Burton JL, Kehrli ME Jr, Kapil S, Horst RL (1995) Regulation of L-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone. J Leukoc Biol 57(2):317–325

    Article  PubMed  CAS  Google Scholar 

  • Cai TQ, Weston PG, Lund LA, Brodie B, McKenna DJ, Wagner WC (1994) Association between neutrophil functions and periparturient disorders in cows. Am J Vet Res 55:934–943

    PubMed  CAS  Google Scholar 

  • Casella S, Scianò S, Zumbo A, Monteverde V, Fazio F, Piccione G (2013) Effect of seasonal variations in Mediterranean area on haematological profile in dairy cow. Comp Clin Pathol 22:691–695

    Article  CAS  Google Scholar 

  • Cavalcanti DM, Lotufo CM, Borelli P, Tavassi AM, Pereira AL, Markus RP, Farsky SHP (2006) Adrenal deficiency alters mechanisms of neutrophil mobilization. Mol Cell Endocrinol 249:32–39

    Article  PubMed  CAS  Google Scholar 

  • Cavalcanti DMH, Lotufo CMC, Borelli P, Ferreira ZS, Markus RP, Farsky SHP (2007) Endogenous glucocorticoids control neutrophil mobilization from bone marrow to blood and tissues in non-inflammatory conditions. Br J Pharmacol 152:1291–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Detilleux JC, Koehler KJ, Freeman AE, Kehrli ME, Kelley DH (1994) Immunological parameters of periparturient Holstein cattle: genetic variation. J Dairy Sci 77:2640–2650

    Article  PubMed  CAS  Google Scholar 

  • Detilleux JC, Kehrli ME Jr, Stabel JR, Freeman AE, Kelley DH (1995) Study of immunological dysfunction in periparturient Holstein cattle selected for high and average milk production. Vet Immunol Immunopathol 44:251–267

    Article  PubMed  CAS  Google Scholar 

  • Duclos D, Hiemstra SJ (2010) State of local cattle breeds in Europe. In: Hiemstra SJ, De Haas Y, Mäki-Tanila Gandini G (eds) Local cattle breeds in Europe, EU GENRES 870/04 project EURECA. Wageningen Academic Publishers. https://doi.org/10.3921/978-90-8686-697.7

  • Echternkamp SE, Gregory KE (1999) Effects of twinning on gestation length, retained placenta, and dystocia. J Anim Sci 77:39–47

    Article  PubMed  CAS  Google Scholar 

  • European Community (1986) 1986/609/EC. Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Official Journal L 358:1–28

  • FAO (2000) Part 2. Farm animal genetic resources. In: Scherf BD (ed) World watch list for domestic animal diversity, 3rd edn. FAO, Rome

    Google Scholar 

  • Farver TB (1997) Concepts of normality in clinical biochemistry. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Furugouri K, Miyata Y, Shijimaya K (1982) Ferritin in blood serum of dairy cows. J Dairy Sci 65(8):1529–1534

    Article  PubMed  CAS  Google Scholar 

  • George JW, Snipes J, Lane VM (2010) Comparison of bovine hematology reference intervals from 1957 to 2006. Vet Clin Pathol 39:138–148

    Article  PubMed  Google Scholar 

  • Gunnink JW (1984) Post-partum leucocytic activity and its relationship to caesarian section and retained placenta. Vet Q 6(2):55–57

    Article  PubMed  CAS  Google Scholar 

  • Hansen PJ (2013) Physiology and endocrinology symposium: maternal immunological adjustments to pregnancy and parturition in ruminants and possible implications for postpartum uterine health: is there a prepartum-postpartum nexus? J Anim Sci 91(4):1639–1649. https://doi.org/10.2527/jas.2012-5934

    Article  PubMed  CAS  Google Scholar 

  • Hatcher L, Stepanski EJ (1994) A step-by-step approach to using the SAS® System for Univariate and Multivariate Statistics. SAS Inst., Inc., Cary, NC

  • Hoeben D, Heyneman R, Burvenich C (1997) Elevated level of β-hydroxybutyric acid in periparturient cows and in vitro effect on respiratory burst activity of bovine neutrophils. Vet Immunol Immunopathol 58(2):165–170. https://doi.org/10.1016/S0165-2427(97)00031-7

    Article  PubMed  CAS  Google Scholar 

  • Jones ML, Allison RW (2007) Evaluation of the ruminant complete blood cell count. Vet Clin Food Anim 23(3):377–402. https://doi.org/10.1016/j.cvfa.2007.07.002

    Article  Google Scholar 

  • Kapale PM, Jagtap DG, Badukale DM, Sahatpure SK (2008) Haematological constituents of blood of Gaolao cattle. Vet World 1(4):113–114

    Google Scholar 

  • Kehrli ME Jr, Nonnecke BJ, Roth JA (1989) Alterations in bovine neutrophil function during the periparturient period. Am J Vet Res 50(2):207–214

    PubMed  Google Scholar 

  • Kehrli ME Jr, Goff JP, Harp JA, Thurston JR, Norcross NL (1990) Effects of preventing periparturient hypocalcemia in cows by parathyroid hormone administration on hematology, conglutinin, immunoglobulin, and shedding of Staphylococcus aureus in milk. J Dairy Sci 73(8):2103–2111. https://doi.org/10.3168/jds.S0022-0302(90)78890-X

    Article  PubMed  CAS  Google Scholar 

  • Kehrli ME Jr, Weigel KA, Freeman AE, Thurston JR, Kelley DH (1991) Bovine sire effects on daughters’ in vitro blood neutrophil functions, lymphocyte blastogenesis, serum complement and conglutinin levels. Vet Immunol Immunopathol 27(2):303–319. https://doi.org/10.1016/0165-2427(91)90028-B

    Article  PubMed  Google Scholar 

  • Kehrli ME Jr, Kimura K, Goff JP, Stabel JR, Nonnecke BJ (1999) Immunological dysfunction in periparturient cows—what role does it play in postpartuminfectious diseases? In: Proc 32nd Annu Conf am Assoc bovine Pract. AABP, Rome, GA pp 24–28

  • Kimura K, Goff JP, Kehrli ME Jr (1999) Effects of the presence of the mammary gland on expression of neutrophil adhesion molecules and myeloperoxidase activity in periparturient dairy cows. J Dairy Sci 82(11):2385–2392. https://doi.org/10.3168/jds.S0022-0302(99)75489-5

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Goff JP, Kehrli ME, Reinhardt TA (2002) Decreased neutrophil function as a cause of retained placenta in dairy cattle. J Dairy Sci 85(3):544–550. https://doi.org/10.3168/jds.S0022-0302(02)74107-6

    Article  PubMed  CAS  Google Scholar 

  • Lee EK, Kehrli ME Jr (1998) Expression of adhesion molecules on neutrophils of periparturient cows and neonatal calves. Am J Vet Res 59(1):37–43

    PubMed  CAS  Google Scholar 

  • Littell RC, Henry PR, Ammerman CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76(4):1216–1231. https://doi.org/10.2527/1998.7641216x

    Article  PubMed  CAS  Google Scholar 

  • Mallard BA, Dekkers JC, Ireland MJ, Leslie KE, Sharif S, Vankampen CL, Wagter L, Wilkie BN (1998) Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J Dairy Sci 81(2):585–595. https://doi.org/10.3168/jds.S0022-0302(98)75612-7

    Article  PubMed  CAS  Google Scholar 

  • Meglia GE, Johannisson A, Petersson L, Persson Waller K (2001) Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta Vet Scand 42:139–150. https://doi.org/10.1186/1751-0147-42-139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millar MC, Laffan M (2015) Hemostatic changes in normal pregnancy. In: Cohen H, O’Brien P (eds) Disorders of thrombosis and hemostasis in pregnancy: a guide to management. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-4411-3

    Chapter  Google Scholar 

  • Mirzadeh K, Tabatabaei S, Bojarpour M, Mamoei M (2010) Comparative study of hematological parameters according strain, age, sex, physiological status and season in Iranian cattle. J Anim Vet Adv 9(16):2123–2127

    Article  Google Scholar 

  • Nagahata H, Makino S, Takeda S, Tagahashi H, Noda H (1988) Assessment of neutrophil function in the dairy cows during the perinatal period. Zoonoses Public Health 35:747–751. https://doi.org/10.1111/j.1439-0450.1988.tb00554.x

    Article  CAS  Google Scholar 

  • Obese FY, Martin GB, Blackberry MA, Ayim-Akonor M, Gomda Y (2015) Upgrading local cattle in tropical west Africa: metabolic hormone concentrations during the post-partum period in Sanga and Friesian–Sanga crossbred cows. Livest Sci 171:84–92. https://doi.org/10.1016/j.livsci.2014.11.007

    Article  Google Scholar 

  • Olmos G, Boyle L, Horan B, Berry DP, Sayers R, Hanlon A, Mee JF (2009) Effect of Holstein–Friesian genetic group on peripartum and early lactation haematological and acute phase proteins profiles, health and fertility. Animal 3(7):1013–1024. https://doi.org/10.1017/S1751731109004224

    Article  PubMed  CAS  Google Scholar 

  • Oltenacu PA, Broom DM (2010) The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim Welf 19(S):39–49

    CAS  Google Scholar 

  • Park MJ, Park PW, Seo YH, Kim KH, Park SH, Jeong JH, Ahn JY (2013) The relationship between iron parameters and platelet parameters in women with iron deficiency anemia and thrombocytosis. Platelets 24(5):348–351. https://doi.org/10.3109/09537104.2012.699641

    Article  PubMed  CAS  Google Scholar 

  • Petrera F, Napolitano F, Dal Prà A, Abeni F (2015) Plasma parameters related to energy and lipid metabolism in periparturient Modenese and Italian Friesian cows. J Anim Physiol Anim Nutr 99(5):962–973. https://doi.org/10.1111/jpn.12270

    Article  CAS  Google Scholar 

  • Petrera F, Catillo G, Napolitano F, Malacarne M, Franceschi P, Summer A, Abeni F (2016) New insights into the quality characteristics of milk from Modenese breed compared with Italian Friesian. Ital J Anim Sci 15(4):559–567. https://doi.org/10.1080/1828051X.2016.1222889

    Article  CAS  Google Scholar 

  • Pryce JE, Veerkamp RF, Thompson R, Hill WG, Simm G (1997) Genetic aspects of common health disorders and measures of fertility in Holstein Friesian dairy cattle. Anim Sci 65(3):353–360. https://doi.org/10.1017/S1357729800008559

    Article  Google Scholar 

  • Pryce JE, Esslemont RJ, Thompson R, Veerkamp RF, Kossaibati MA, Simm G (1998) Estimation of genetic parameters using health, fertility and production data from a management recording system for dairy cattle. Anim Sci 66(3):577–584. https://doi.org/10.1017/S1357729800009152

    Article  Google Scholar 

  • Quiroz-Rocha GF, LeBlanc SJ, Duffield TF, Wood D, Leslie KE, Jacobs RM (2009) Reference limits for biochemical and hematological analytes of dairy cows one week before and one week after parturition. Can Vet J 50(4):383–388

    PubMed  PubMed Central  CAS  Google Scholar 

  • Radkowska I, Herbut E (2014) Hematological and biochemical blood parameters in dairy cows depending on the management system. Anim Sci Paper Rep 4(32):317–325

    Google Scholar 

  • Ramsay WNM (1973) The measurement of serum transferrin by iron-binding capacity. J Clin Pathol 26(9):691–696. https://doi.org/10.1136/jcp.26.9.691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roland L, Drillich M, Iwersen M (2014) Hematology as a diagnostic tool in bovine medicine. J Vet Diagn Investig 26(5):592–598. https://doi.org/10.1177/1040638714546490

    Article  Google Scholar 

  • Singh MKV, Verma AK, Kumar V, Singh SK, Roy D (2013) Hematological and serum biochemical profile of apparently healthy Hariana cattle heifers in northern India. Pak J Biol Sci 16(21):1423–1425. https://doi.org/10.3923/pjbs.2013.1423.1425

    Article  PubMed  CAS  Google Scholar 

  • Sripad K, Kowalli S, Metri R (2014) Hematological profile of Khillar breed of cattle in Karnataka. Vet World 7(5):311–314. https://doi.org/10.14202/vetworld.2014.311-314

    Article  Google Scholar 

  • Steinhardt M, Thielscher HH, von Horn T, von Horn R, Ermgassen K, Ladewig J, Smidt D (1994) The hemoglobin concentration in the blood of dairy cattle of different breeds and their offspring during the peripartum period. Tierarztl Prax 22(2):129–135

    PubMed  CAS  Google Scholar 

  • Suriyasathaporn W, Heuer C, Noordhuizen-Stassen EN, Schukken YH (2000) Hyperketonemia and the impairment of udder defense: a review. Vet Res 31(4):397–412

    Article  PubMed  CAS  Google Scholar 

  • Weber PS, Toelboell T, Chang LC, Tirrell JD, Saama PM, Smith GW, Burton JL (2004) Mechanisms of glucocorticoid-induced down-regulation of neutrophil L-selectin in cattle: evidence for effects at the gene-expression level and primarily on blood neutrophils. J Leukoc Biol 75(5):815–827. https://doi.org/10.1189/jlb.1003505

    Article  PubMed  CAS  Google Scholar 

  • Wood D, Quiroz-Rocha GF (2010) Normal hematology of cattle. In: Weiss DJ, Wardrop KJ (eds) Schalm’s veterinary hematology, 6th edn. Wiley-Blackwell, Ames

    Google Scholar 

Download references

Acknowledgments

The authors want to thank the farmers of the herd “Soc. Sempl. Agricola Cornetti Alessandro e F.lli,” Quinzano d’Oglio (BS) for the on-farm management of the trial.

Funding

The research was supported by GENZOOT project funded by the Italian Ministry of Agriculture (Mipaaf, Ministero delle politiche agricole, alimentari e forestali).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Petrera.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrera, F., Abeni, F. Hematological and iron-related parameters in a dual-purpose local cattle breed compared to the specialized Italian Friesian breed during transition and lactation periods. Comp Clin Pathol 27, 869–878 (2018). https://doi.org/10.1007/s00580-018-2675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-018-2675-8

Keywords

Navigation