Skip to main content

Advertisement

Log in

Changes in reduced glutathione, oxidized glutathione, and glutathione peroxidase in cats with naturally occurring chronic kidney disease

  • Brief Communication
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is one of the most common diseases in geriatric cats. The objective of this study was to determine oxidative stress in CKD cats by measuring changes in reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx), and reduced glutathione to oxidized glutathione (GSH/GSSG) ratio in cats with naturally occurring chronic kidney disease (CKD). Thirteen clinically normal client-owned aged-matched cats and 23 naturally occurring CKD cats were included. Completed blood count, blood urea nitrogen, creatinine, GSH, GPx, GSSG, and GSH/GSSG ratio were measured on the first day of diagnosis. The results showed that CKD cats had significantly lower GSH, GPx, and GSH/GSSG ratio levels (2.77 ± 0.27 mM, 2.32 ± 0.40 nmol/min and 148.26 ± 34.19) than the clinically normal client-owned age-matched cats (4.23 ± 0.67 mM, 6.68 ± 0.79 nmol/min and 312.64 ± 76.80). The GSSG in the CKD cats (35.20 ± 4.37 μM) was significantly higher than in the clinically normal client-owned age-matched cats (19.66 ± 2.75 μM). The results indicated that cats with naturally occurring CKD experience oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1. SPSS version 17.0, SPSS Co, Chicago, Ill.

References

  • Agarwal R, Campbell RC, Warnock DG (2004) Oxidative stress in hypertension and chronic kidney disease: role of angiotensin II. Semin Nephrol 24:101–114

    Article  CAS  PubMed  Google Scholar 

  • Ahmadpoor P, Eftekhar E, Nourooz-Zadeh J et al (2009) Glutathione, glutathione-related enzymes, and total antioxidant capacity in patients on maintenance dialysis. Iran J Kidney Dis 3:22–27

    PubMed  Google Scholar 

  • Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  CAS  PubMed  Google Scholar 

  • Allison RW, Lassen ED, Burkhard MJ et al (2000) Effect of a bioflavonoid dietary supplement on acetaminophen-induced oxidative injury to feline erythrocytes. J Am Vet Med Assoc 217:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Beutler E (1971) Glutathion peroxidase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune & Stratton, New York, pp 66–68

    Google Scholar 

  • Center SA, Warner KL, Erb HN (2002) Liver glutathione concentrations in dogs and cats with naturally occurring liver disease. Am J Vet Res 63:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Christopher MM (1989) Relation of endogenous Heinz bodies to disease and anemia in cats. J Am Vet Med Assoc 194:1089–1095

    CAS  PubMed  Google Scholar 

  • Christopher MM, White JG, Eaton JW (1990) Erythrocyte pathology and mechanisms of Heinz body-mediated hemolysis in cats. Vet Pathol 27:299–310

    Article  CAS  PubMed  Google Scholar 

  • Curello S, Ceconl C, Cargnonl A et al (1987) Improved procedure for determining glutathione in plasma as an index of myocardial oxidative stress. Clin Chem 33:1448–1449

    CAS  PubMed  Google Scholar 

  • Denzoin LA, Franci RJ, Tapia MO et al (2008) Quantification of plasma reduced glutathione, oxidized glutathione and plasma total glutathione in healthy cats. J Feline Med Surg 10:230–234

    Article  PubMed  Google Scholar 

  • DiBartola SP, Rutgers HC, Zack PM et al (1987) Clinicopathologic findings associated with chronic renal disease in cats: 74 cases (1973–1984). J Am Vet Med Assoc 190:1196–1202

    CAS  PubMed  Google Scholar 

  • Dounousi E, Papavasiliou E, Makedou A et al (2006) Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kid Dis 48:752–760

    Article  CAS  PubMed  Google Scholar 

  • Elliot J, Barber P (1998) Feline chronic renal failure: clinical findings in 80 cases diagnosed between 1992 and 1995. J Small Anim Pract 39:78–85

    Article  Google Scholar 

  • Fryer MJ (1997) Vitamin E may slow kidney failure owing to oxidative stress. Redox Rep 3:259–261

    CAS  PubMed  Google Scholar 

  • Handelman GJ, Walter MF, Adhikarla R et al (2001) Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int 59:1960–1966

    Article  CAS  PubMed  Google Scholar 

  • Hannken T, Schroeder R, Stahl RA et al (1998) Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Kidney Int 54:1923–1933

    Article  CAS  PubMed  Google Scholar 

  • Harvey JW, Kaneko JJ (1976) Oxidation of human and animal hemoglobins with ascorbate, acetylphenylhydrazine, nitrite, and hydrogen peroxide. Br J Hematol 32:193–203

    Article  CAS  Google Scholar 

  • Jones DP, Carlson JL, Mody VC et al (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28:625–635

    Article  CAS  PubMed  Google Scholar 

  • Keegan RF, Webb CB (2010) Oxidative stress and neutrophil function in cats with chronic renal failure. J Vet Intern Med 24:514–519

    Article  CAS  PubMed  Google Scholar 

  • Lawler DF, Evans RH, Chase K et al (2006) New perspectives the aging feline kidney: a model mortality antagonist? J Feline Med Surg 8:363–371

    Article  PubMed  Google Scholar 

  • Lulich JP, Osborne CA, O’Brien TD et al (1992) Feline renal failure: questions, answers, questions. Compend Contin Educ Pract Vet 14:127–153

    Google Scholar 

  • Lund E, Armstrong PJ, Kirk CA et al (1999) Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med Assoc 214:1336–1341

    CAS  PubMed  Google Scholar 

  • Mayer-Roenne B, Goldstein RE, Erb HN (2007) Urinary tract infections in cats with hyperthyroidism, diabetes mellitus and chronic kidney disease. J Feline Med Surg 9:124–132

    Article  PubMed  Google Scholar 

  • Moradi H, Pahl MV, Elahimehr R et al (2009) Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res 153:77–85

    Article  CAS  PubMed  Google Scholar 

  • N’emeth I, Orvos H, Boda D (2001) Blood glutathione redox status in gestational hypertension. Free Radic Biol Med 30:715–721

    Article  Google Scholar 

  • Patton CJ, Crouch SR (1977) Enzymatic determination of urea. Anal Chem 49:464–469

    Article  CAS  Google Scholar 

  • Pusoonthornthum R, Pusoonthornthum P, Krishnamra N (2010) Calcium-phosphorus homeostasis and changes in parathyroid hormone secretion in cats with various stages of spontaneous chronic renal failure. Comp Clin Pathol 19(3):287–293

    Article  CAS  Google Scholar 

  • Pusoonthornthum R, Vimuktanandana O, Pusoonthornthum P et al (2012) Calcium-phosphorus homeostasis in cats with spontaneous chronic kidney disease and metabolic acidosis. Comp Clin Pathol 21(5):985–991

    Article  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski P, Malgorzewicz S, Slominska E et al (2006) Interrelationship between uremic toxicity and oxidative stress. J Ren Nutr 16:190–193

    Article  PubMed  Google Scholar 

  • Sakhi AK, Russnes KM, Smeland S et al (2006) Simultaneous quantification of reduced and oxidized glutathione in plasma using a two-dimensional chromatographic system with parallel porous graphitized carbon columns coupled with fluorescence and colorimetric electrochemical detection. J Chromatogr A 1104:179–189

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  • Snow NS (1962) Some observations on the reactive sulfhydryl groups in hemoglobin. Biochem J 84:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viviano KR, Lavergne SN, Goodman L et al (2009) Glutathione, cysteine, and ascorbate concentrations in clinically ill dogs and cats. J Vet Intern Med 23:250–257

    Article  CAS  PubMed  Google Scholar 

  • Watson ADJ (2001) Indicators of renal insufficiency in dogs and cats presented at a veterinary teaching hospital. Aust Vet Pract 31:54–58

    Google Scholar 

  • Webb CB, Falkowski L (2009) Oxidative stress and innate immunity in feline patients with diabetes mellitus; the role of nutrition. J Feline Med Surg 11:271–276

    Article  PubMed  Google Scholar 

  • Webb CB, Twedt DC, Fettman MJ et al (2003) S-adenosylmethionine (SAMe) in a feline acetaminophen model of oxidative injury. J Feline Med Surg 5:69–75

    Article  CAS  PubMed  Google Scholar 

  • Webb C, Bedwell C, Guth A et al (2006) Use of flow cytometry and monochlorobimane to quantitate intracellular glutathione concentrations in feline leukocytes. Vet Immunol Immunopathol 112:129–140

    Article  CAS  PubMed  Google Scholar 

  • Webb C, Lehman T, McCord K et al (2008) Oxidative stress during acute FIV infection in cats. Vet Immunol Immunopathol 122:16–24

    Article  CAS  PubMed  Google Scholar 

  • White JD, Norris JM, Baral RM et al (2006) Naturally-occurring chronic renal disease in Australian cats: a prospective study of 184 cases. Aust Vet J 84:188–194

    Article  CAS  PubMed  Google Scholar 

  • Wood LG, Garg ML, Blake RJ et al (2008) Oxidized vitamin E and glutathione as markers of clinical status in asthma. Clin Nutr 27:579–586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Graduate School, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosama Pusoonthornthum.

Ethics declarations

All applicable Chulalongkorn University Animal Care and Use Committee guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was support by grant from the Graduate School, Chulalongkorn University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piyarungsri, K., Pusoonthornthum, R. Changes in reduced glutathione, oxidized glutathione, and glutathione peroxidase in cats with naturally occurring chronic kidney disease. Comp Clin Pathol 25, 655–662 (2016). https://doi.org/10.1007/s00580-016-2248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-016-2248-7

Keywords

Navigation