Advertisement

Comparative Clinical Pathology

, Volume 26, Issue 2, pp 269–276 | Cite as

Prognostic value and clinical significance of TCR rearrangements for MRD monitoring in ALL patients

  • Maria Kavianpur
  • Mohammad Shahjahani
  • Kaveh Jaseb
  • Siddha Kasar
  • Najmaldin Saki
Review Article

Abstract

Acute lymphoblastic leukemia is a hematological malignancy of lymphoid progenitor cells associated with excessive proliferation of lymphocytes, and lymphocyte markers can be used for the diagnosis and assessment of disease. Cell surface receptors, including T cell receptor and immunoglobulin (on T and B cells, respectively), are among the most important lymphocyte markers. Gene segment variation, i.e., involvement of several genes in the expression of each receptor, is effective on extensive rearrangement of cell surface receptors. These receptors can be observed in both T-acute lymphoblastic leukemia (ALL) and precursor B-ALL cells. In this study, we have discussed T cell receptor (TCR) gene rearrangements in ALL. As leukemia cell proliferation originates from a unique clone, clone-specific rearrangement can be very helpful in diagnosis and detection of remaining malignant cells from among normal cells for minimal residual disease. On the other hand, each of the TCR genes is associated with translocation in ALL types, and the result of gene rearrangements can be used as prognosis markers.

Keywords

T cell receptor Minimal residual disease Acute lymphoblastic leukemia 

Notes

Acknowledgments

We wish to thank all our colleagues in Shafa Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Ahmadzadeh A, Saedi S, Jaseb K, Asnafi AA, Alghasi A, Saki N (2013) T-cell acute lymphoblastic leukemia with del (7)(q11. 2q22) and aberrant expression of myeloid markers. Int J hematology-Oncology and Stem Cell Res 7(4):40Google Scholar
  2. Assumpcao JG, Ganazza MA, de Araujo M, Silva AS, Scrideli CA, Brandalise SR et al (2010) Detection of clonal immunoglobulin and T-cell receptor gene rearrangements in childhood acute lymphoblastic leukemia using a low-cost PCR strategy. Pediatr Blood Cancer 55(7):1278–86CrossRefPubMedGoogle Scholar
  3. Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B et al (2009) Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 113(18):4153–62CrossRefPubMedGoogle Scholar
  4. Born W, Yagüe J, Palmer E, Kappler J, Marrack P (1985) Rearrangement of T-cell receptor beta-chain genes during T-cell development. Proc Natl Acad Sci 82(9):2925–9CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brüggemann M, Van der Velden V, Raff T, Droese J, Ritgen M, Pott C et al (2004) Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia 18(4):709–19CrossRefPubMedGoogle Scholar
  6. Brumpt C, Delabesse E, Beldjord K, Davi F, Cayuela J-M, Millien C et al (2000) The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 96(6):2254–61PubMedGoogle Scholar
  7. Campana D (2009a) Minimal residual disease in acute lymphoblastic leukemia. Semin Hematol 46(1):100–6CrossRefPubMedPubMedCentralGoogle Scholar
  8. Campana D (2009b) Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 23(5):1083–98CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cazzaniga G, Biondi A (2005) Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. 2005-01-01 00:00:00. 382–90 p.Google Scholar
  10. Chitgopeker P, Sahni D (2014) T-cell receptor gene rearrangement detection in suspected cases of cutaneous T-cell lymphoma. J Investig Dermatol 134(4), e19CrossRefPubMedGoogle Scholar
  11. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer R, Möricke A et al (2010) Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 115(16):3206–14CrossRefPubMedGoogle Scholar
  12. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al (2000) Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 96(8):2691–6PubMedGoogle Scholar
  13. Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk BI, Ribeiro RC et al (2002) Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 100(1):52–8CrossRefPubMedGoogle Scholar
  14. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D et al (2009) Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10(2):147–56CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dadi S, Le Noir S, Asnafi V, Beldjord K, Macintyre EA (2009) Normal and pathological V (D) J recombination: contribution to the understanding of human lymphoid malignancies. V (D) J Recombination: Springer; p. 180–94.Google Scholar
  16. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334(6181):395–402CrossRefPubMedGoogle Scholar
  17. Deptala A, Mayer SP (2001) Detection of minimal residual disease. Methods Cell Biol 385–421Google Scholar
  18. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S et al (2008a) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 22(4):771–82CrossRefPubMedGoogle Scholar
  19. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, Van Der Velden V, Fischer S et al (2008b) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 22(4):771–82CrossRefPubMedGoogle Scholar
  20. Gameiro P, Mortuza FY, Hoffbrand AV, Foroni L (2002) Minimal residual disease monitoring in adult T-cell acute lymphoblastic leukemia: a molecular based approach using T-cell receptor G and D gene rearrangements. Haematologica 87(11):1126–34PubMedGoogle Scholar
  21. Hara J, Benedict S, Champagne E, Takihara Y, Mak T, Minden M et al (1988) T cell receptor delta gene rearrangements in acute lymphoblastic leukemia. J Clin Investig 82(6):1974CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hara J, Benedict S, Yumura K, Ha-Kawa K, Gelfand E (1989a) Rearrangement of variable region T cell receptor gamma genes in acute lymphoblastic leukemia. V gamma gene usage differs in mature and immature T cells. J Clin Investig 83(4):1277CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hara J, Benedict SH, Champagne E, Mak T, Minden M, Gelfand E (1989b) Relationship between rearrangement and transcription of the T-cell receptor alpha, beta, and gamma genes in B-precursor acute lymphoblastic leukemia. Blood 73(2):500–8PubMedGoogle Scholar
  24. Hübner S, Cazzaniga G, Flohr T, Van der Velden V, Konrad M, Pötschger U et al (2003) High incidence and unique features of antigen receptor gene rearrangements in TEL–AML1-positive leukemias. Leukemia 18(1):84–91CrossRefGoogle Scholar
  25. Jansen M, Corral L, Van der Velden V, Panzer-Grümayer R, Schrappe M, Schrauder A et al (2007) Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 21(4):633–41PubMedGoogle Scholar
  26. Kraszewska MD, Dawidowska M, Kosmalska M, Sedek L, Grzeszczak W, Szczepanski T et al (2012) Immunoglobulin/T-cell receptor gene rearrangements in the diagnostic paradigm of pediatric patients with T-cell acute lymphoblastic leukemia. Leuk Lymphoma 53(7):1425–8CrossRefPubMedGoogle Scholar
  27. Larmonie NS, Dik WA, Meijerink JP, Homminga I, van Dongen JJ, Langerak AW (2013) Breakpoint sites disclose the role of the V (D) J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica 98(8):1173–84CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li A-H, Forestier E, Rosenquist R, Roos G (2002) Minimal residual disease quantification in childhood acute lymphoblastic leukemia by real-time polymerase chain reaction using the SYBR green dye. Exp Hematol 30(10):1170–7CrossRefPubMedGoogle Scholar
  29. Malec M, Van der Velden V, Björklund E, Wijkhuijs J, Söderhäll S, Mazur J et al (2004) Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: comparison between RQ-PCR analysis of Ig/TcR gene rearrangements and multicolor flow cytometric immunophenotyping. Leukemia 18(10):1630–6CrossRefPubMedGoogle Scholar
  30. Martinelli G, Farabegoli P, Testoni N, Terragna C, Vittone A, Raspadori D et al (1997) Detection of clonality by heteroduplex analysis of amplified junctional region of T-cell receptor gamma in patients with T-cell acute lymphoblastic leukemias. Haematologica 82(2):161–5PubMedGoogle Scholar
  31. Meleshko A, Lipay N, Stasevich I, Potapnev M (2005) Rearrangements of IgH, TCRD and TCRG genes as clonality marker of childhood acute lymphoblastic leukemia. Exp Oncol 27(4):319–24PubMedGoogle Scholar
  32. Meleshko AN, Belevtsev MV, Savitskaja TV, Potapnev MP (2006) The incidence of T-cell receptor gene rearrangements in childhood B-lineage acute lymphoblastic leukemia is related to immunophenotype and fusion oncogene expression. Leuk Res 30(7):795–800CrossRefPubMedGoogle Scholar
  33. Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE et al (2010) Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 11(5):429–38CrossRefPubMedGoogle Scholar
  34. Murray JM, Messier T, Rivers J, O’Neill JP, Walker VE, Vacek PM et al (2012) V(D)J recombinase-mediated TCR β locus gene usage and coding joint processing in peripheral T cells during perinatal and pediatric development. J Immunol 189(5):2356–64CrossRefPubMedGoogle Scholar
  35. Nirmala K, Rajalekshmy K, Raman S, Shanta V, Rajkumar T (2002) PCR–heteroduplex analysis of TCR γ, δ and TAL-1 deletions in T-acute lymphoblastic leukemias: implications in the detection of minimal residual disease. Leuk Res 26(4):335–43CrossRefPubMedGoogle Scholar
  36. Paolini S, Gazzola A, Sabattini E, Bacci F, Pileri S, Piccaluga PP (2011) Pathobiology of acute lymphoblastic leukemia. Seminars in Diagnostic Pathology; Elsevier.Google Scholar
  37. Plasschaert SL, Kamps WA, Vellenga E, de Vries EG, de Bont ES (2004) Prognosis in childhood and adult acute lymphoblastic leukaemia: a question of maturation? Cancer Treat Rev 30(1):37–51CrossRefPubMedGoogle Scholar
  38. Poopak B, Saki N, Purfatholah AA, Najmabadi H, Mortazavi Y, Arzanian MT et al (2013) Pattern of immunoglobulin and T-cell receptor-δ/γ gene rearrangements in Iranian children with B-precursor acute lymphoblastic leukemia. HematologyGoogle Scholar
  39. Poopak B, Valeshabad AK, Elahi F, Rezvani H, Khosravipour G, Jahangirpour MA et al. (2015) PCR analysis of IgH and TCR-γ gene rearrangements as a confirmatory diagnostic tool for lymphoproliferative disorders. Indian J Hematol Blood Transfus 1-8Google Scholar
  40. Sazawal S, Bhatia K, Gurbuxani S, Singh Arya L, Raina V, Khattar A et al (2000) Pattern of immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements in childhood acute lymphoblastic leukemia in India. Leuk Res 24(7):575–82CrossRefPubMedGoogle Scholar
  41. Schrappe M, Reiter A, Ludwig W-D, Harbott J, Zimmermann M, Hiddemann W et al. (2000) Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 902000 2000-06-01 00:00:00. 3310–22 p.Google Scholar
  42. Scrideli CA, Queiróz RG, Kashima S, Sankarankutty BO, Tone LG (2004) T cell receptor gamma (TCRG) gene rearrangements in Brazilian children with acute lymphoblastic leukemia: analysis and implications for the study of minimal residual disease. Leuk Res 28(3):267–73CrossRefPubMedGoogle Scholar
  43. Sudhakar N, Nancy NK, Rajalekshmy KR, Ramanan G, Rajkumar T (2007) T-cell receptor gamma and delta gene rearrangements and junctional region characteristics in south Indian patients with T-cell acute lymphoblastic leukemia. Am J Hematol 82(3):215–21CrossRefPubMedGoogle Scholar
  44. Szczepański T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER et al (1999) Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant Dh6-19 and Dh7-27 gene usage, can result in complete VDJ rearrangements, and are rare in T-cell receptor β lineage. Blood 93(12):4079–85PubMedGoogle Scholar
  45. Szczepanski T, Langerak A, Willemse M, Wolvers-Tettero I, Van Wering E, Van Dongen J (2000a) T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia reflect ‘end-stage’ recombinations: implications for minimal residual disease monitoring. Leukemia 14(7):1208–14CrossRefPubMedGoogle Scholar
  46. Szczepanski T, Langerak A, Willemse M, Wolvers-Tettero I, Van Wering E, Van Dongen J (2000b) T cell receptor gamma(TCRG) gene rearrangements in T cell acute lymphoblastic leukemia reflect ‘end-stage’ recombinations: implications for minimal residual disease monitoring. Leukemia 14(7):1208–14CrossRefPubMedGoogle Scholar
  47. Szczepański T, Flohr T, van der Velden VH, Bartram CR, van Dongen JJ (2002a) Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 15(1):37–57CrossRefPubMedGoogle Scholar
  48. Szczepański T, Flohr T, van der Velden VHJ, Bartram CR, van Dongen JJM (2002b) Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 15(1):37–57CrossRefPubMedGoogle Scholar
  49. Szczepański T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ (2002c) Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B–ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 99(7):2315–23CrossRefPubMedGoogle Scholar
  50. Szczepański T, Van der Velden V, Raff T, Jacobs D, Van Wering E, Brüggemann M et al (2003) Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia 17(11):2149–56CrossRefPubMedGoogle Scholar
  51. Szczepański T, van der Velden VH, Hoogeveen PG, de Bie M, Jacobs DC, van Wering ER et al (2004) Vδ2-Jα rearrangements are frequent in precursor-B–acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 103(10):3798–804CrossRefPubMedGoogle Scholar
  52. van der Velden VH, van Dongen JJ (2009) MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Springer, Leukemia, pp 115–50Google Scholar
  53. Van der Velden V, Wijkhuijs J, Jacobs D, Van Wering E, Van Dongen J (2002) T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 16(7):1372–80CrossRefPubMedGoogle Scholar
  54. van der Velden VHJ, Szczepanski T, Wijkhuijs JM, Hart PG, Hoogeveen PG, Hop WCJ et al (2003a) Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 17(9):1834–44CrossRefPubMedGoogle Scholar
  55. Van der Velden V, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, Van Dongen J (2003b) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17(6):1013–34CrossRefPubMedGoogle Scholar
  56. Van der Velden V, Szczepanski T, Wijkhuijs J, Hart P, Hoogeveen P, Hop W et al (2003c) Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 17(9):1834–44CrossRefPubMedGoogle Scholar
  57. Van der Velden V, Brüggemann M, Hoogeveen P, De Bie M, Hart P, Raff T et al (2004) TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 18(12):1971–80CrossRefPubMedGoogle Scholar
  58. Van der Velden V, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer E et al (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21(4):604–11PubMedGoogle Scholar
  59. Van Dongen J, Langerak A, Brüggemann M, Evans P, Hummel M, Lavender F et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–317CrossRefPubMedGoogle Scholar
  60. van Dongen JJ, van der Velden VH, Brüggemann M, Orfao A (2015) Minimal residual disease (MRD) diagnostics in acute lymphoblastic leukemia (ALL): need for sensitive, fast and standardized technologies. Blood 125(26):3996–4009, blood-2015-03-580027CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wolvers-Tettero IL (1991) Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clin Chim Acta 198(1):1–92PubMedGoogle Scholar
  62. Yao L, Chen Z, Cen J, Liang J, Feng Y, He J et al (2008) The pattern of clonal immunoglobulin and T-cell receptor (Ig/TCR) gene rearrangements in Chinese adult acute lymphoblastic leukemia patients. Leuk Res 32(11):1735–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Maria Kavianpur
    • 1
  • Mohammad Shahjahani
    • 1
  • Kaveh Jaseb
    • 1
  • Siddha Kasar
    • 2
  • Najmaldin Saki
    • 1
  1. 1.Health Research Institute, Thalassemia and Hemoglobinopathies Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA

Personalised recommendations