Skip to main content

Advertisement

Log in

The effect of caraway (Carum carvi L.) on the blood antioxidant enzymes and lipid peroxidation in streptozotocin-induced diabetic rats

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Different studies have shown that oxidative stress has an important role in both types of diabetes mellitus. The aim of this study was to evaluate the effect of different doses of Carum carvi oil on antioxidant enzymes of streptozotocin-induced diabetic rats. Fifty-six Wistar male rats weighing between 250 ± 50 g were divided into seven equal groups. Diabetes was induced in the experimental rats with streptozotocin (60 mg kg−1 body weight). Rats in group I served as the normal control animals; group II served as the caraway control, whereas group III served as the diabetic control and group IV was the diabetic control which received sunflower oil. Groups V to VII were the test groups receiving various oral doses of caraway oil (5, 10, and 20 mg kg−1 body weight, respectively). The experiment lasted for a period of 30 days, and the following antioxidant enzymes were assayed: SOD, GSH-Px, CAT, and MDA. The results showed that rats receiving Carum carvi oil gained significantly more weight and had a lower level of blood glucose (P < 0.05) compared to the controls. In addition, activity of MDA was decreased, and the activities of SOD, GSH-Px, and CAT were significantly high (P < 0.05) in the test groups administered black caraway oil. It is concluded that caraway seed oil can be effective in reducing oxidative stress in diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asadollahi A, Sarir H, Omidi A, Montazer Torbati M (2014) Hepatoprotective potential of Prosopis farcta beans extracts against acetaminophen induced hepatotoxicity in Wistar rat. Int J Prev Med 5:1281–1285

    PubMed Central  PubMed  Google Scholar 

  • Baynes JW, Thorpe SR (1996) The role of oxidative stress in diabetic complications. Curr Opin Endocrinol 3:277–284

    Article  Google Scholar 

  • Borcea V, Nourooz-Zadeh J, Wolff SP, Klevesath M, Hofmann M, Urich H, Wahl P, Ziegler R, Tritschler H, Halliwell B, Nawroth PP (1999) α-lipoic acid decreases oxidative stress even in diabetic patients with poor glycemic control and albuminuria. Free Radic Biol Med 26:1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  CAS  PubMed  Google Scholar 

  • De Martino L, De Feo V, Fratianni F, Nazzaro F (2009) Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat Pro Commun 4:1741–1750

    Google Scholar 

  • Eddouks M, Lemhadri A, Michel JB (2004) Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 94:143–148

    Article  CAS  PubMed  Google Scholar 

  • El-Missiry MA, El Gindy AM (2000) Amelioration of alloxan induced diabetes mellitus and oxidative stress in rats by oil of Eruca sativa seeds. Ann Nutr Metab 44:97–100

    Article  CAS  PubMed  Google Scholar 

  • Ene AC, Bukbuk DN, Ogunmola OO (2006a) Effect of different doses of black caraway (Carum carvi L.) oil on the levels of serum creatinine in Alloxan induces diabetic rats. J Med Sci 6:701–703

    Article  Google Scholar 

  • Ene AC, Milala MA, Nwankwo EA (2006b) The effect of different doses of black caraway (Carum carvi L.) oil on the liver enzymes of alloxan-induced diabetic rats. J Med Sci 6:994–998

    Article  Google Scholar 

  • Ene AC, Nwankwo EA, Samdi LM (2007) Alloxan-induced diabetes in rats and the effects of black caraway (Carum carvi L.) oil on their body weight. Res J Med Sci 2:994–998

    Google Scholar 

  • Friedman J, Peleg E, Kagan T, Shnizer S, Rosenthal T (2003) Oxidative stress in hypertensive, diabetic, and diabetic hypertensive rats. Am J Hypertens 16:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Gajdosik A, Gajdosikova A, Stefek M, Navarova J, Hozova R (1999) Streptozotocin-induced experimental diabetes in male Wistar rats. Gen Physiol Biophys 18:54–62

    CAS  PubMed  Google Scholar 

  • Griesmacher A, Kindhauser M, Andert ES, Schreiner W, Toma C, Knoebl P, Pietschmann P, Prager R, Schnack C, Schernthaner G (1995) Enhanced serum levels of thiobarbituric acid reactive substances in diabetes mellitus. Am J Med 98:469–475

    Article  CAS  PubMed  Google Scholar 

  • Haidari F, Sadjadi N, Jalali MT, Shahi M (2011) The effect of oral administration of Carum carvi on weight, serum glucose, and lipid profile in streptozotocin induced diabetic rats. Saudi Med J 32:695–700

    PubMed  Google Scholar 

  • Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H (1999) Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats a model of type 2 diabetes. Diabetes 48:927–932

    Article  CAS  PubMed  Google Scholar 

  • Johri RK (2011) Cuminum cyminum and Carum carvi: an update. Pharmacogn Rev 6:63–72

    Article  Google Scholar 

  • Kamalakkannan N, Mainzen Prince PS (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharmacol Toxicol 98:97–103

    Article  CAS  PubMed  Google Scholar 

  • Kaur K, Michael H, Arora S, Harkonen PL, Kumar S (2003) Studies on correlation of antimutagenic and antiproliferative activities of Juglans regia L. J Environ Pathol Toxicol Oncol 22:59–67

    PubMed  Google Scholar 

  • Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 1802:396–405

    Article  CAS  Google Scholar 

  • Korkina LG, Afanas’ev IB (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163

    Article  CAS  PubMed  Google Scholar 

  • Laight DW, Carrier MJ, Anggard EE (2000) Antioxidant, diabetes and endothelial dysfunction. Cardiovasc Res 47:457–464

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Britton M, Sima AA, Dunbar JC (2004) Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 76:249–262

    Article  CAS  PubMed  Google Scholar 

  • Lykkesfeldt J (2001) Determination of malondialdehyde as dithiobarbituric acid adduct in biological samples by HPLC with fluorescence detection: comparison with ultraviolet-visible spectrophotometry. Clin Chem 47: 1725–1727

  • Mazloomi SM, Shekarforoush SS, Sajedianfard J (2010) Effect of symbiotic yogurt on blood biochemical parameters in streptozotocin-Induced diabetic rats. J Vet Res 14:66–74

    Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase, an enzymatic function for erythrocuprein. J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Miyake Y, Yamamoto K, Tsujihara N, Osawa T (1998) Protective effects of lemon flavonoids on oxidative stress in diabetic rats. J Lipid Res 33:689–695

    Article  CAS  Google Scholar 

  • Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28: 659-671

  • Moubarz G, Taha MM, Mahdy-Abdallah H (2014) Antioxidant effect of Carum carvi on the immune status of streptozotocin - induced diabetic rats infected with Staphylococcus aureus. World Appl Sci J 30:63–69

    Google Scholar 

  • Moussa SA (2008) Oxidative stress in diabetes. Rom J Biophys 18:225–236

    CAS  Google Scholar 

  • Najda A, Dyduch J, Brzozowski N (2008) Flavonoid content and antioxidant activity of caraway roots (Carum carvi L). Veg Crop Res Bull 68:127–133

    Google Scholar 

  • Nuraliev IN, Avezov GA (1992) The efficacy of quercetin in alloxan diabetes. Eksp Klin Farmakol 55:42–44

    CAS  PubMed  Google Scholar 

  • Omidi A, Rahdari S, Hasanpoorfard M (2014) A preliminary study on antioxidant activities of saffron petal extracts in lambs. Vet Sci Dev 4:5161–5164

    Article  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Ramesh B, Pugalendi KV (2006) Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats. J Med Food 9:562–566

    Article  CAS  PubMed  Google Scholar 

  • Ranjbarian P, Sadeghian S, Shirazi M, Sarraf-Nejad A, Fazeli M, Amin G (2004) Antimicrobial properties of four plant essential oils and essences against H. pylori using disc diffusion and flow cytometry methods. Scientific J Med Uni Ham 33:42–47

    Google Scholar 

  • Rodov V, Vinokur Y, Gogia N, Chkhikvishvili I (2010) Hydrophilic and lipophilic antioxidant capacities of Georgian spices for meat and their possible health implications. Georgian Med News 179:61–66

    PubMed  Google Scholar 

  • Rousselot DB (2004) The role of antioxidant micronutrients in the prevention of diabetic complications. Treat Endocrinol 3:41–52

    Article  Google Scholar 

  • Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174

    Article  CAS  Google Scholar 

  • Ruhe RC, McDonald RB (2001) Use of antioxidant nutrients in the prevention and treatment of type 2 diabetes. Amer J Coll Nutr 20:363S–369S

    Article  CAS  Google Scholar 

  • Sadiq S, Nagi AH, Shahzad M, Zia A (2010) The reno-protective effect of aqueous extract of Carum carvi (black zeera) seeds in streptozotocin induced diabetic nephropathy in rodent. Saudi J Kidney Dis Transpl 21:1058–1065

    PubMed  Google Scholar 

  • Samojlik I, Lakic N, Mimica-Dukic N, Dakovic-Svajcer K, Bozin B (2010) Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). J Agric Food Chem 58:8848–8853

    Article  CAS  PubMed  Google Scholar 

  • Sanders RA, Rauscher FM, Watkins JB (2001) Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 15:143–149

    Article  CAS  PubMed  Google Scholar 

  • Shirwaikar A, Rajendran K, DineshKumar C, Bodla R (2004) Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin-nicotinamide type 2 diabetic rats. J Ethnopharmacol 91:171–175

    Article  PubMed  Google Scholar 

  • Slaughter MR, O'Brien PJ (2000) Fully-automated spectrophotometric method for measurement of antioxidant activity of catalase.Clin Biochem 33(7):525–534

  • Sriplanga K, Adisakwattanab S, Rungsipipatc A, Yibchok-anuna S (2007) Effects of Orthosiphon stamineus aqueous extract on plasma glucose concentration and lipid profile in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol 109:510–514

    Article  Google Scholar 

  • Stavic B (1994) Role of chemopreventers in human diet. Clin Biochem 27:319–332

    Article  Google Scholar 

  • Szkudelski T (2001) The Mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  • Thippeswamya NB, Akhilender Naidub K, Achur Rajeshwara N (2013) Antioxidant and antibacterial properties of phenolic extract from Carum carvi L. J Pharmacy Res 7:352–357

    Article  Google Scholar 

  • Wolff SP (1993) Diabetes mellitus and free radical. Free radicals, transition metals and oxidative stress in the etiology of diabetes mellitus and complications. Br Med Bull 49:643–649

    Google Scholar 

  • Yang H, Jin X, Kei Lam CW, Yan SK (2011) Oxidative stress and diabetes mellitus. Clin Chem Lab Med 49:1773–1782

    CAS  PubMed  Google Scholar 

  • Yu LL, Zhou KK, Parry J (2005) Antioxidant properties of cold pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem 91:723–729

    Article  CAS  Google Scholar 

  • Zafar M, Naqvi SN (2010) Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in Albino rats: a comparative study. Int J Morphol 28:135–142

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research Council of Shiraz University and School of Veterinary Medicine, Shiraz University for financial and technical support of this study (Grant No. 71-GR-VT-5).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Nazifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erjaee, H., Rajaian, H., Nazifi, S. et al. The effect of caraway (Carum carvi L.) on the blood antioxidant enzymes and lipid peroxidation in streptozotocin-induced diabetic rats. Comp Clin Pathol 24, 1197–1203 (2015). https://doi.org/10.1007/s00580-014-2060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-014-2060-1

Keywords

Navigation