Skip to main content

Advertisement

Log in

Functional analysis of genes involved in beta-1, 2-Mannosylation of glycans and putative cell wall proteins in Candida albicans during hyphae transition

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Structural studies of cell wall components of the pathogenic yeast Candida albicans revealed a family of genes involved in beta-mannosyltransferase associated with the addition of beta-mannose to the acid-labile fraction of cell wall phosphopeptidomannan. Despite the importance of beta-1, 2-oligomannosides in virulence, the gene expression pattern of this family during hyphae transition have not been identified in C. albicans. We investigated using RT-qPCR whether genes encoding beta-1, 2-mannosylation of glycans and putative cell wall proteins are expressed during hyphae induction. Here, we identify four out of nine putative genes encoding beta-1, 2-mannosylation of glycans, BMT2, BMT4, BMT5, and BMT6 were downregulated during 30, 60, and 180 min of hyphae transition. We also observed that expression of Candida putative GPI-anchored protein coding genes PGA6, PGA19, PGA54, PGA56, PGA58, PGA59, and PGA13 were upregulated after 60 min of hyphae transition, while the levels of expression of these genes showed moderately changes during 15 and 180 min of hyphae transition. In either case, the involvement of these genes in hyphal growth makes them putative targets for new antifungal drugs aimed at inhibiting hyphae formation in C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams BB, Hanel H, Hoehler T (1991) Ciclopirox olamine: a hydroxypyridone antifungal agent. Clin Dermatol 9:471–477

    Article  CAS  PubMed  Google Scholar 

  • Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1:787–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castillo L, Martinez AI, Garcera A, Garcia-Martinez J, Ruiz-Herrera J, Valentin E, Sentandreu R (2006) Genomic response programs of Candida albicans following protoplasting and regeneration. Fungal Genet Biol 43:124–134

    Article  CAS  PubMed  Google Scholar 

  • De Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965

    Article  PubMed Central  PubMed  Google Scholar 

  • De Groot PW, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796

    Article  PubMed  Google Scholar 

  • Elson SL, Noble SM, Solis NV, Filler SG, Johnson AD (2009) An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth. PLoS Genet 5:e1000664

    Article  PubMed Central  PubMed  Google Scholar 

  • Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schafer W, Hube B (2002) Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70:3689–3700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghalehnoo ZR, Rashki A, Najimi M, Dominguez A (2010) The role of diclofenac sodium in the dimorphic transition in Candida albicans. Microb Pathog 48:110–115

    Article  PubMed  Google Scholar 

  • Harcus D, Nantel A, Marcil A, Rigby T, Whiteway M (2004) Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 15:4490–4499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kniemeyer O, Schmidt AD, Vodisch M, Wartenberg D, Brakhage AA (2011) Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics. Int J Med Microbiol 301(5):368–377

    Article  PubMed  Google Scholar 

  • Lermann U, Morschhauser J (2008) Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 154:3281–3295

    Article  CAS  PubMed  Google Scholar 

  • Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  CAS  PubMed  Google Scholar 

  • Losberger C, Ernst JF (1989) Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res 17:9488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mille C, Bobrowicz P, Trinel PA, Li H, Maes E, Guerardel Y, Fradin C, Martinez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S (2008) Identification of a new family of genes involved in beta-1, 2-mannosylation of glycans in Pichia pastoris, and Candida albicans. J Biol Chem 283:9724–9736

    Article  CAS  PubMed  Google Scholar 

  • Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue SB, Yabe T, Yamada-Okabe T, Arisawa M, Watanabe T, Yamada-Okabe H (1997) Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1, 3-glucan synthesis. J Bacteriol 179:4096–4105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramanan N, Wang Y (2000) A high-affinity iron permease essential for Candida albicans virulence. Science 288:1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Rashki A, Ghalehnoo ZR, Dominguez A (2012) The early response of Candida albicans filament induction is coupled with wholesale expression of the translation machinery. Comp Clin Pathol 21:1533–1545

    Article  Google Scholar 

  • Sandovsky-Losica H, Chauhan N, Calderone R, Segal E (2006) Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells. Med Mycol 44:329–334

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Cowen LE, Griffin AM, Chan L, Kohler JR (2008) The Candida albicans pescadillo homolog is required for normal hyphal-to-yeast morphogenesis and yeast proliferation. Proc Natl Acad Sci U S A 105:20918–20923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman F (2005) The importance of mutation, then and now: studies with yeast cytochrome c. Mutat Res 589:1–16

    Article  CAS  PubMed  Google Scholar 

  • Shorr AF, Gupta V, Sun X, Johannes RS, Spalding J, Tabak YP (2009) Burden of early-onset candidemia: analysis of culture-positive bloodstream infections from a large U.S. database. Crit Care Med 37:2519–2526, quiz 2535

    Article  PubMed  Google Scholar 

  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Yabuki N, Arisawa M, Hamada K, Kitada K (2000) Upregulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae. Mol Gen Genet 264:64–74

    Article  CAS  PubMed  Google Scholar 

  • Trofa D, Gacser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  • Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C (2005) The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis 41:1232–1239

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rashki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashki, A., Rashki Ghalehnoo, Z. & Rashki Ghalehnoo, M. Functional analysis of genes involved in beta-1, 2-Mannosylation of glycans and putative cell wall proteins in Candida albicans during hyphae transition. Comp Clin Pathol 23, 917–921 (2014). https://doi.org/10.1007/s00580-013-1713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-013-1713-9

Keywords

Navigation