Skip to main content

Protective effect of Phyllanthus niruri against cyclosporine A-induced nephrotoxicity in rats

Abstract

Phyllanthus niruri (Euphorbiaceae) is a popular plant in folk medicine, whole plant, fresh leaves, and fruits are used in the treatment of various diseases. In the present study, nephroprotective potential of aqueous extract of P. niruri was investigated against cyclosporine A (CsA) induced changes in kidney of Wistar rats. Nephrotoxicity was induced by oral administration of CsA (25 mg/kg/b.w.) dissolved in olive oil for a period of 21 days. Nephrotoxicity induced rats were treated with aqueous extract of P. niruri (200 mg/kg/b.w.) for a period of 21 days. Levels of serum creatinine and blood urea nitrogen, renal marker enzymes in serum and different enzymic and non-enzymic antioxidants, lipid peroxidation products, as well as ATPases in kidney homogenates were measured in normal, control (toxicity induced), and P. niruri treated rats. Histopathological studies were also been carried out. Administration of CsA increased the serum levels of creatinine and blood urea nitrogen, alkaline phosphatase, alanine aminotransaminase, and lactate dehydrogenase thereby indicating damage to kidneys. Increased lipid peroxidation and a decrease in antioxidants enzymes were observed in toxicity-induced rats. The levels of membrane-bound ATPases were also significantly altered. Upon administration of P. niruri, the levels of serum creatinine and blood urea nitrogen and also lipid peroxidation were found to be markedly reduced. Renal antioxidant defense systems, such as superoxide dismutase, catalase, glutathione peroxidase activities and reduced glutathione, and vitamins e and c, depleted by cyclosporine A, were restored to normalcy by treatment with the extract. The drug also effectively attenuated renal dysfunction and normalized the altered renal morphology and also restored the activities of renal ATPases. The results suggest that the nephroprotective effect of P. niruri could be due to the inherent antioxidant and free-radical scavenging principle(s) contained in the extract. In conclusion, our study indicates that P. niruri through its antioxidant activity effectively salvaged CsA induced nephrotoxicity.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Adedapo AA, Abatan MO, Idowu SO, Olorunshogo OO (2005a) Toxic effects of chromatographic fractions of Phyllanthus amarus on the serum biochemistry of rats. Phytother Res 19:812–815

    PubMed  Article  CAS  Google Scholar 

  • Adedapo AA, Adegbayibi AY, Emikpe BO (2005b) Clinicopathological changes associated with the aqueous extract of the leaves of Phyllanthus amarus in rats. Phytother Res 19:971–976

    PubMed  Article  CAS  Google Scholar 

  • Adelman RD, Spangler WL, Beasom F, Ishizaki G, Conzelman GM (1981) Frusemide enhancement of neltimicin nephrotoxicity in dogs. J Antimicrob Chemother 7:431–435

    PubMed  Article  CAS  Google Scholar 

  • Alaa Sabry, Amr El-Husseini, Hussien Sheashaa, Eid Abdel-Shafy, Khaled El-Dahshan, Mona Abdel-Rahim, Ehab Abdel-Kaleek, Hamdy Abo-Zena (2006) Colchicine vs. omega-3 fatty acids for prevention of chronic cyclosporine nephrotoxicity in Sprague Dawley rats: an experimental animal model. Arch Med Res 37:933–940

    Article  Google Scholar 

  • Asha VV, Akhila S, Wills PJ, Subramoniam A (2004) Further studies on the antihepatotoxic activity of Phyllanthus maderaspatensis Linn. J Ethnopharmacol 92:67–70

    PubMed  Article  CAS  Google Scholar 

  • Bagalkotkar G, Sagineedu SR, Saad MS, Stanslas J (2006) Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review. J Pharm Pharmacol 58:1559–1570

    PubMed  Article  CAS  Google Scholar 

  • Banday AA, Farooq N, Priyamvada S, Yusufi ANK, Khan F (2008) Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues. Life Sci 82:450–459

    PubMed  Article  CAS  Google Scholar 

  • Bhattacharjee R, Sil PC (2007) Protein isolate from the herb, Phyllanthus niruri L. (Euphorbiaceae), plays hepatoprotective role against carbon tetrachloride induced liver damage via its antioxidant properties. Food Chem Toxicol 45(5):817–826

    PubMed  Article  CAS  Google Scholar 

  • Bonting SL (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. In: Bihar EE (ed) Membrane and ion transport. Wiley Interscience, London, pp 257–363

  • Buetler TM, Cottet-Maire F, Krauskopf A, Ruegg UT (2000) Does cyclosporin A generate free radicals? Trends Pharmacol Sci 21:288–290

    PubMed  Article  CAS  Google Scholar 

  • Buffoli B, Pechanova O, Kojsova S, Andriantsitohaina R, Giugno L, Bianchi R (2005) Provinol prevents CsA-induced nephrotoxicity by reducing reactive oxygen species, iNOS and NF-kB expression. J Histochem Cytochem 53:1459–1468

    PubMed  Article  CAS  Google Scholar 

  • Calixto JB, Santos ARS, Filho VC, Yunes RA (1998) A review of the plants of the genus Phyllanthus: their chemistry, pharmacology and therapeutic potential. Med Res Reviews 18:225–258

    Article  CAS  Google Scholar 

  • Campos R, Gorrido A, Guerra R, Valenznela A (1989) Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Med 55:417–419

    PubMed  Article  CAS  Google Scholar 

  • Chander V, Tirkey N, Chopra K (2005) Resveratrol, a polyphenolic phytoalexin protects against cyclosporine-induced nephrotoxicity through nitric oxide dependent mechanism. Toxicol 210:55–64

    Google Scholar 

  • Chatterjee M, Sil PC (2006) Hepatoprotective effect of aqueous extract of Phyllanthus niruri on nimesulide-induced oxidative stress in vivo. Indian J Biochem Biophys 43:299–305

    PubMed  CAS  Google Scholar 

  • Diplock AT (1994) Antioxidants and free radicals scavengers. In: Rice-Evans CA, Burdon RH (eds) Free radical damage and its control. Elsevier Science, Amsterdam, pp. 43–49

  • Eklund PC, Lngvik OK, Warna JP, Salmi TO, Willfar SM, Sjaholm RE (2005) Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org Biomol Chem 3:3336–3347

    PubMed  Article  CAS  Google Scholar 

  • Esrefoglu M, Kurus M, Sahna E (2003) The beneficial effect of melatonin on chronic cyclosporin A nephrotoxicity in rats. J Int Med Res 31:42

    PubMed  Article  CAS  Google Scholar 

  • Fernandez NJ, Kidney BA (2007) Alkaline phosphatase: beyond the liver. Vet Clin Pathol 36:223–233

    PubMed  Article  Google Scholar 

  • Fricker G, Fahr A (1997) Mechanism of hepatic transport of cyclosporine A: an explanation for its cholestatic action ? Yale J Biol Med 70:379–390

    PubMed  CAS  Google Scholar 

  • Galan AI, Fernandez E, Moran D, Munnoz ME, Jimenez R (1995) Cyclosporine A hepatotoxicity: effect of prolonged treatment with cyclosporine on biliary lipid secretion in the rat. Clin Exp Pharmacol Physiol 22:260–265

    PubMed  Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 148–149

    Google Scholar 

  • Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620

    PubMed  CAS  Google Scholar 

  • Harish R, Shivanandappa T (2006) Antioxidant activity and hepatoprotective of Phyllanthus niruri. Food Chem 95:180–185

    Article  CAS  Google Scholar 

  • Hjerten S, Pan H (1983) Purification and characterization of two forms of low affinity calciumion-ATPase fromerythrocyte membranes. Biochim Biophys Acta 755:457–466

    Article  Google Scholar 

  • Huang RL, Huang YL, Ou JC, Chen CC, Hsu FL, Chang C (2003) Screening of 25 compounds isolated from Phyllanthus species for anti-human hepatitis B virus in vitro. Phytother Res 17:449–453

    PubMed  Article  CAS  Google Scholar 

  • Jalaluddin Iqbal Md, Dewan Fauzia Z, Chowdhury SAR, Mamun MIR, Moshiuzzaman M, Monowara Begum (2007) Pre-treatment by n-hexane extract of Phyllanthus niruri can alleviate paracetamol-induced damage of the rat liver. Bangladesh J Pharmacol 2:43–48

    Google Scholar 

  • Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK (1993) Free radicals and the heart. J Pharmacol Toxicol Methods 30:55–67

    PubMed  Article  CAS  Google Scholar 

  • Kavutcu M, Canbolat O, Ozturk S, Olcay E, Ulutepe S, Ekinci C, Gokhun IH, Durak I (1996) Reduced enzymatic antioxidant defense mechanism in kidney tissues from gentamicin-treated guinea pigs: effects of vitamins E and C. Nephron 72:269–274

    PubMed  Article  CAS  Google Scholar 

  • Khundmiri SJ, Asghar M, Khan F, Salim S, Yusufi ANK (2004) Effect of ischemia and reperfusion on enzymes of carbohydrate metabolism in rat kidney. J Nephrol 17:17

    Google Scholar 

  • Lanese DM, Falk SA, Conger JD (1994) Sequential agonist activation and site specific mediation of acute cyclosporine constriction in rat renal arterioles. Transplatation 58:1371–1378

    CAS  Google Scholar 

  • Leslie T (2003) Technical data report for Chanca Piedra “Stone Breaker” (Phyllanthus niruri) in herbal secrets of the rain forest, 2nd edn. Sage, Austin

    Google Scholar 

  • Lindblom P, Rafter I, Copley C, Andersson U, Hedberg JJ, Berg AL et al (2007) Isoforms of alanine aminotransferases in human tissues and serum differential tissue expression using novel antibodies. Arch Biochem Biophys 466:66–77

    PubMed  Article  CAS  Google Scholar 

  • Longoni B, Migliori M, Ferretti A et al (2002) Melatonin prevents cyclosporine-induced nephrotoxicity in isolated and perfused rat kidney. Free Radic Res 36:357

    PubMed  Article  CAS  Google Scholar 

  • Maaruhn M, Paar D, Bomhard E (1983) Diagnostic sensitivity of urinary enzymes in experimental kidney damage in the rat. In: Galteau MM, Siest G, Henny J (eds) Biologic perspective. Paris, pp 943–945

  • Magendiramani V, Ume Salma S, Kalayarasan S, Nagendraprabu P, Arunkumar J, Sudhandiran G (2009) S- allylcysteine attenuates renal injury by altering the expressions of iNOS and matrix metalloproteinase-2 during cyclosporine- induced neprotoxicity in Wistar rats. J Appl Toxicol 29(6):522–530

    PubMed  Article  CAS  Google Scholar 

  • Manjrekar AP, Jisha V, Bag PP, Adhikary B, Pai MM, Hedge A, Nandhini M (2008) Effect of Phyllanthus niruri Linn. treatment on liver, kidney and testis in CCl4 induced hepatotoxic rats. Ind J Exp Biol 46:515–520

    Google Scholar 

  • Mansour M, Daba MH, Gado A et al (2002) Protective effect of L-arginine against nephrotoxicity induced by cyclosporine in normal rats. Pharmacol Res 45:441

    PubMed  Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 16:469–474

    Article  Google Scholar 

  • Mason J (1990) Pharmacology of cyclosporine (sandimmune). VII. Pathophysiology and toxicology of cyclosporine in humans and animals. Pharmacol Rev 41(3):423–434

    PubMed  CAS  Google Scholar 

  • Mellinger CG, Carbonero ER, Cipriani TR, Gorin PA, Iacomini M (2005a) Xylans from the medicinal herb Phyllanthus niruri. J Nad Prod 68:129

    Article  CAS  Google Scholar 

  • Mellinger CG, Carbonero ER, Noleto GR, Cipriani TR, Oliveira MB, Gorin PA, Iacomini M (2005b) Chemical and biological properties of an arabinogalactan from Phyllanthus niruri. J Nat Prod 68:1479–1483

    PubMed  Article  CAS  Google Scholar 

  • Monsen ER (2000) Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc 100:637–640

    PubMed  Article  CAS  Google Scholar 

  • Moron MS, Defierre JW, Mannervik JB (1979) Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–74

    PubMed  Article  CAS  Google Scholar 

  • Mun KC, Suh SI (2000) Effect of melatonin on renal function in cyclosporine nephrotoxicity. Transplant Proc 32:1919

    PubMed  Article  CAS  Google Scholar 

  • Murugaiyah V, Chan KL (2006) Antihyperuricemic lignans from the leaves of Phyllanthus niruri. Planta Med 72:1262–1267

    PubMed  Article  CAS  Google Scholar 

  • Natelson S, Scott ML, Beffa C (1951) A rapid method for the estimation of urea in biologic fluids. Am J Clin Pathol 21:275

    PubMed  CAS  Google Scholar 

  • Nishiura JL, Campos AH, Boim MA, Heilberg IP, Schor N (2004) Phyllanthus niruri normalizes elevated urinary calcium levels in calcium stone forming (CSF) patients. Urol Res 32:362–366

    PubMed  Article  CAS  Google Scholar 

  • Ognjanovic BI, Pavlovic SZ, Maletic SD, Zikic RV, Stajn AS, Radojicic RM, Saicic ZS, Petrovic VM (2003) Protective influence of Vitamin E on antioxidant defence system in the blood of rats treated with cadmium. Physiol Res 52:563–570

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thio-barbituric acid reaction. Anal Biochem 95:357–358

    Article  Google Scholar 

  • Ohnishi N, Sakai K, Kogi K (1982) Arm and shoulder muscle load in various keyboard operating jobs of women. J Human Ergol 11(1):89–97

    Google Scholar 

  • Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 62:3–11

    PubMed  Article  CAS  Google Scholar 

  • Owen JA, Iggo B, Scandrett FJ, Stewart CP (1954) The determination of creatinine in plasma or serum and in urine; a critical examination. Biochem J 58:426–437

    PubMed  CAS  Google Scholar 

  • Ozturk HS, Kavutcu M, Kacmaz M, Canbolat O, Durak I (1997) The effects of gentamicin on the activities of glutathione peroxidase and superoxide dismutase enzymes and malondialdehyde levels in heart tissues of guinea pigs. Curr Med Res Opin 14:47–52

    PubMed  Article  CAS  Google Scholar 

  • Quaife ML, Diu MY (1984) Chemical estimation of vitamin E in tissues and the α-tocopherol content of normal tissues. J Biol Chem 180:263–272

    Google Scholar 

  • Remuzzi G, Perico N (1995) Cyclosporine-induced renal dysfunction in experimental animals and humans. Kidney Int Suppl 52:S70–S74

    PubMed  CAS  Google Scholar 

  • Rezzani R (2006) Exploring cyclosporine A-side effects and the protective role-played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol 21:301–316

    PubMed  CAS  Google Scholar 

  • Rezzani R, Rodella L, Bianchi R (1999) Early metabolic changes in peripheral blood cells of renal transplant recipients treated with cyclosporine A. Int J Immunopharmacol 21:455–465

    PubMed  Article  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase purification and assay. Science 179:588–590

    PubMed  Article  CAS  Google Scholar 

  • Sanchez Navarro MR, Fernandez-Conde ME, Blanco Martin S, Samaniego C (2002) Alkaline phosphatase isoenzymes in the serum of patients with renal insufficiency. An Med Int 19:449–452

    CAS  Google Scholar 

  • Santos AR, De Campos RO, Miguel OG, Filho VC, Siani AC, Yunes RA, Calixto JB (2000) Antinociceptive properties of extracts of new species of plants of the genus Phyllanthus (Euphorbiaceae). J Ethnopharmacol 72:229–238

    PubMed  Article  CAS  Google Scholar 

  • Sastry TCS, Kavathekar KR (1990) Plants for reclamation of wastelands. Publication and Information Directorate, New Delhi

    Google Scholar 

  • Satyanarayana PS, Chopra K (2002) Oxidative stress-mediated renal dysfunction by cyclosporine A in rats: attenuation by trimetazidine. Ren Fail 24:259

    PubMed  Article  CAS  Google Scholar 

  • Shin YH, Lee SH, Mun KC (2002) Effect of melatonin on the antioxidant enzymes in the kidneys of cyclosporine-treated rats. Transplant Proc 34:2650

    PubMed  Article  CAS  Google Scholar 

  • Sigal NH, Dumont FJ (1993) Immunosuppression. In: Paul WE (ed) Fundamental immunology, 3rd edn. Raven, New York, pp 903–915

    Google Scholar 

  • Sinha KA (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    PubMed  Article  CAS  Google Scholar 

  • Syamasundar KV, Singh B, Thakur RS, Husain A, Kiso Y, Hikino H (1985) Antihepatotoxic principles of Phyllanthus niruri herbs. J Ethnopharmacol 14:41–44

    Google Scholar 

  • Thevenod F, Friedman JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J 13:1751–1761

    PubMed  CAS  Google Scholar 

  • Tirkey N, Kaur G, Vij G, Chopra K (2005) Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol 5:15

    PubMed  Article  Google Scholar 

  • Tsuboi K, Tazuma S, Ochi H, Chayama K (2003) Hydrophilic bile salts have a cytoprotective effect against cyclosporine A induced cholestasis through enhanced canalicular membrane fluidity and transporter activity. Hepatol Res 25:38–47

    PubMed  Article  CAS  Google Scholar 

  • Verpooten GA, Tulkens PM, Bennett WM (1998) Aminoglycosides and vancomycin. In: De Broe ME, Porter GA, Bennett AM, Verpooten GA (eds) Clinical nephrotoxicants, renal injury from drugs and chemicals. Kluwer, Dordrecht, pp 105–120

    Google Scholar 

  • Wei YH (1998) Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Boil Med 217:53–63

    Article  CAS  Google Scholar 

  • Wolf A, Cleman N, Frieauff W, Ryffel B, Cordier A (1994) Role of reactive oxygen formation in the cyclosporine a mediated impairment of renal function. Transplant Proc 26:2902–2907

    PubMed  CAS  Google Scholar 

  • Yilmaz S, Alessahin A, Sahna E, Karahan I, Ozer S (2006) Protective effect if lycopene on adriamycin-induced cardio toxicity and nephrotoxicity. Toxicol 218:164–171

    Article  CAS  Google Scholar 

  • Zolotarjova N, Ho C, Mellgren RL, Askari A, Huang WH (1994) Different sensitivities of native and oxidized forms of Na+/K(+)-ATPase to intracellular proteinases. Biochim Biophys Acta 1192:125–131

    PubMed  Article  CAS  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest among authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Parameswari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanchana, K., Parameswari, C.S. Protective effect of Phyllanthus niruri against cyclosporine A-induced nephrotoxicity in rats. Comp Clin Pathol 22, 885–893 (2013). https://doi.org/10.1007/s00580-012-1493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-012-1493-7

Keywords

  • Phyllanthus niruri
  • Cyclosporine A (CsA)
  • Antioxidants
  • Nephrotoxicity