Skip to main content

A comparison between metformin and garlic on alloxan-induced diabetic dogs

Abstract

The present study was carried out to investigate the hypoglycaemic effects of metformin and garlic (Allium sativum Linn) in alloxan-induced diabetic dogs. The anti-diabetic activity of garlic had never been investigated in experimental diabetic dogs. Twenty-one adult dogs were randomly allocated into three equal groups consisting of seven dogs. The first group was the diabetic control, the second was the metformin treated and the third was the garlic-treated group. This study aimed to test 14-day oral administration of garlic (100 mg/kg) for its effects in alloxan-induced diabetic dogs in comparison with metformin (1,700 mg/dog/day) anti-diabetic activity. The mean decrease in blood glucose was 9.27 mg/dl for metformin and 25.93 mg/dl for garlic. The results showed that treatment with metformin non-significantly reduced blood glucose level (p > 0.05) and significantly increased serum insulin level in diabetic dogs (p < 0.05). In contrast to metformin, garlic resulted in a significant decrease in the level of blood glucose, with a concomitant significant increase in the serum insulin level in diabetic dogs (p < 0.05). Garlic had a mild but significant blood glucose-lowering effect and the long-term use of this agent may be advantageous, over chemical drugs, in alleviating some of the chronic diseases and complications caused by diabetes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ananthan R, Latha M, Ramkumar KM, Pari L, Baskar C, NarmathaBai V (2004) Modulatory effects of Gymnema montanum leaf extract on alloxan-induced oxidative stress in Wistar rats. Nutrition 20:280–285

    PubMed  Article  CAS  Google Scholar 

  2. Augusti KT (1996) Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L.). Indian J Exp Biol 34:634–640

    PubMed  CAS  Google Scholar 

  3. Augusti KT, Sheela CG (1996) Antiperoxide effect of S-allyl cysteine sulfoxide, a insulin secretagogue, in diabetic rats. Experientia 52:115–120

    PubMed  Article  CAS  Google Scholar 

  4. Avizeh R, Najafzadeh H, Pourmahdi M, Mirzaee M (2010) Effect of glibenclamide and fruit extract of Zizyphusspina-christion alloxan-induced diabetic dogs. Intern J Appl Res Vet Med 8:109–113

    CAS  Google Scholar 

  5. Baily CJ, Turner RC (1996) Metformin. N Engl J Med 334:574–578

    Article  Google Scholar 

  6. Balogh E, Toth M, Bolcshazi G, Abonyi-Toth ZS, Kocsis E, Semjen G (2008) Oral hypoglycaemic drugs in alloxan-induced diabetes mellitus in dogs. Acta Vet Brno 77:363–371

    Article  CAS  Google Scholar 

  7. Banerjee SK, Maulik SK (2002) Effect of garlic on cardiovasculardisorders: a review. Nutrition J 1:1–14

    Article  Google Scholar 

  8. Baynes JW (1991) Role of oxidative stress in developmentof complications in diabetes. Diabetes 40:405–412

    PubMed  Article  CAS  Google Scholar 

  9. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications. Diabetes 48:1–9

    PubMed  Article  CAS  Google Scholar 

  10. Chakrabarti R, Rajagopalan R (2002) Diabetesand insulin resistance associated disorders: disease and the therapy. Curr Sci 83:1533–1538

    CAS  Google Scholar 

  11. Chu CA, Wiernsperger N, Muscato N, Knauf M, Neal DW, Cherrington AD (2000) Theacute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition ofglucogenolysis. Metabolism 49:1619–1626

    PubMed  Article  CAS  Google Scholar 

  12. Cisse A, Ndiaye A, Lopez-Sall P, Seck F, Faye B (2000) Antidiabetic activity of Zizyphus mauritiana Lam (Rhamnaceae). Dakar Med 45:105–107

    PubMed  CAS  Google Scholar 

  13. Cooperstein SJ, Watkins D (1981) Action of toxic drugs on islet cells. In: Cooperstein SJ, Watkins D (eds) The islets of Langerhans. Academic, New York, pp 387–425

    Google Scholar 

  14. Cusi K, Consoli A, Defronzo RA (1996) Metabolic effects of metformin on glucose and lactate metabolismin noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81:4059–4067

    PubMed  Article  CAS  Google Scholar 

  15. Defronzo RA (1999) Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 131:281–303

    PubMed  CAS  Google Scholar 

  16. Diabetes Atlas, second edition (2003) Belgium: International Diabetes Federation (IDF)

  17. Feillet-Coudray C, Rock E, Coudray C, Grzelkowska K, Azais-Braesco V, Dardevet D, Mazur A (1999) Lipid peroxidation andantioxidant status in experimental diabetes. Clinica Chimica Acta 284:31–43

    Article  CAS  Google Scholar 

  18. Fery F, Plat L, Balasse EO (1997) Effects of metformin on the pathways of glucose utilization after oral glucose in non-insulin-dependent diabetes mellitus patients. Metabolism 46:227–233

    PubMed  Article  CAS  Google Scholar 

  19. Gad MZ, El-Sawalhi MM, Ismail MF, El-Tanbouly ND (2006) Biochemical study of the anti-diabetic action of the Egyptian plants fenugreek and balanites. Mol Cell Biochem 281:173–183

    PubMed  Article  CAS  Google Scholar 

  20. Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmaco 81:81–100

    Article  CAS  Google Scholar 

  21. Hussein HM, El-Sayed EM, Said AA (2006) Antihyperglycemic, antihyperlipidemic and antioxidant effects of Zizyphus spinachristi and Zizyphus jujuba in alloxan diabetic rats. Intern J Pharmaco 2:563–570

    Article  Google Scholar 

  22. Jahodar L (1993) Plants with hypoglycemic effects. Ceskoslovenska Farmacie 42:251–256

    PubMed  CAS  Google Scholar 

  23. Jain RC, Vyas CR (1975) Garlic in alloxan-induced diabetic rabbits. Am J Clin Nutr 28:684–685

    PubMed  Google Scholar 

  24. Jelodar G, Razmi N, Gholampour V (2007) Arginase alteration in the reproductive system of alloxan-diabetic dogs. J Repro Develop 53:317–321

    Article  CAS  Google Scholar 

  25. Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Curr Med Chem 13:1203–1218

    PubMed  Article  CAS  Google Scholar 

  26. Kim JM, Chung JY, Lee SY, Choi EW, Kim MK, Hwang CY, Youn HY (2006) Hypoglycemic effects of vanadium on alloxan monohydrate-induced diabetic dogs. J Vet Sci 7:391–395

    PubMed  Article  Google Scholar 

  27. Lenhard JM, Kliewer SA, Paulik MA, Plunket KD, Lehman JM, Weiel JE (1997) Effects of troglitazone and metformin on glucose and lipid metabolism: alterations of two distinct molecular pathways. Biochem Pharmacol 54:801–818

    PubMed  Article  CAS  Google Scholar 

  28. Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    PubMed  Article  CAS  Google Scholar 

  29. Liu CT, Hse H, Lii CK, Chen PS, Sheen LY (2005) Effects of garlic oil and daily trisulfide on glycemic control in diabetic rats. Eur J Pharmacol 516:165–173

    PubMed  Article  CAS  Google Scholar 

  30. Marles RJ, Farnsworth NR (1995) Antidiabeticplants and their active constituents. Phytomedicine 2:137–189

    PubMed  Article  CAS  Google Scholar 

  31. Mathew PT, Augusti KT (1973) Studies on the effect of allicin(diallyl disulphide-oxide) on alloxan diabetes l. Hypoglycaemic action and enhancement of serum insulin effect and glycogensynthesis. Indian J Biochem Biophys 10:209–212

    PubMed  CAS  Google Scholar 

  32. Mohamadin AM, Mariee AD, El-Hefnawy HM, Fath El-Bab M (2003) Hypoglycemic activity of green tea extract in streptozotocin induced diabetic rats. Arab J Lab Med 29:397–400

    Google Scholar 

  33. Nazif NM (2002) Phytoconstituents of Ziziphusspina-christi L. fruits and their antimicrobial activity. Food Chem 76:77–81

    Article  CAS  Google Scholar 

  34. Norberg A, Hoa NK, Liepinsh E, Van Phan D, Thuan ND, Jörnvall H, Sillard R, Ostenson CG (2004) A novel insulin-releasing substance, phanoside, from the plant Gynostemma pentaphyllum. J Biolo Chem 279:41361–41367

    Article  CAS  Google Scholar 

  35. Orekhov AN, Grunwald J (1997) Effects of garlic on atherosclerosis. Nutrition 13:656–663

    PubMed  Article  CAS  Google Scholar 

  36. Pedraza-Chaverri J, Maldonado PD, Medina-Campos ON, Olivares-Corichi IM, Granados-Silvestre MA, Hernandez-Pando R, Ibarra-Rubio ME (2000) Garlic ameliorates gentamicinnephrotoxicity: relation to antioxidant enzymes. Free Radic Biol Med 29:602–611

    PubMed  Article  CAS  Google Scholar 

  37. Pentikainen PJ, Neuvonen PJ, Penttila A (1979) Pharmacokinetics of metformin after intravenous andoral administration to man. Eur J Clin Pharmacol 16:195–202

    PubMed  Article  CAS  Google Scholar 

  38. Peungvicha P, Thirawarapan SS, Temsiririrkkul R, Watanabe H, Kumar Prasain J, Kadota S (1998) Hypoglycemic effect of the water extract of Piper sarmentosum in rats. J Ethnopharmaco 60:27–32

    Article  CAS  Google Scholar 

  39. Prabhakar PK, Doble M (2008) A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 4:291–308

    PubMed  Article  CAS  Google Scholar 

  40. Sanchez FD, Game MJ, Jimenez I, Zarzuelo A (1994) Hypoglycemic activity of juniperus “berries”. Planta Med 60:197–200

    Article  Google Scholar 

  41. Santini SA, Marra G, Giardina B, Cotroneo P, Mordente A, Martorana GE, Manto A, Ghirlanda G (1997) Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 46:1853–1858

    PubMed  Article  CAS  Google Scholar 

  42. Sheweita SA, Newairy AA, Mansour HA, Yousef MI (2002) Effect of some hypoglycemic herbs on the activity of phase I and II drug-metabolizing enzymes in alloxan-induced diabetic rats. Toxicology 174:131–139

    PubMed  Article  CAS  Google Scholar 

  43. Stumvoll M, Nurjhan N, Periello G, Dailey G, Gerich JE (1995) Metabolic effects of metforminin non-insulin dependent diabetes mellitus. N Engl J Med 333:550–554

    PubMed  Article  CAS  Google Scholar 

  44. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Rec 50:537–564

    CAS  Google Scholar 

  45. Thomson M, Al-Amin ZM, Al-Qattan KK, Shaban LH, Ali M (2007) Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diabetes & Metabolism 15:108–115

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the research council of Shahid Chamran University of Ahvaz for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahman Mosallanejad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mosallanejad, B., Avizeh, R., Varzi, H.N. et al. A comparison between metformin and garlic on alloxan-induced diabetic dogs. Comp Clin Pathol 22, 169–174 (2013). https://doi.org/10.1007/s00580-011-1381-6

Download citation

Keywords

  • Diabetes
  • Dog
  • Metformin
  • Garlic
  • Alloxan
  • Therapy