Comparative Clinical Pathology

, Volume 21, Issue 6, pp 1533–1545 | Cite as

The early response of Candida albicans filament induction is coupled with wholesale expression of the translation machinery

  • Ahmad Rashki
  • Zahra Rashki Ghalehnoo
  • Angel Dominguez
Original Article

Abstract

One of the main parameters involved in the yeast-to-hypha transition in Candida albicans is temperature, and this change is involved in its pathogenicity. A complete switch between yeast and hypha can be achieved by changing the temperature from 28°C to 37°C in Lee medium supplemented with serum. To compare the early transcriptional response of C. albicans to temperature, we have carried out a genome-wide analysis of the C. albicans response to temperature after a 5-min exposure at 37°C. Using a cDNA microarray method, we found changes in 1,635 genes, suggesting that the key time for controlling the dimorphic change occurs very early. The overrepresented categories of up-regulated genes consisted of transporters, transcription factor and translation initiation factors, ribosomal proteins, DNA-directed RNA polymerase, cell cycle and cell polarity, RNA helicase and genes encoding polyamine biosynthesis. The main categories of down-regulated genes included: carbohydrate metabolism, actin filament organization, electron transport and ATP biosynthesis, respiration, histone assembly, and ergosterol biosynthesis. Collectively, these results demonstrate that much of the gene regulation observed is during the early stage of yeast-to-hypha transition.

Keywords

C. albicans Hypha transition cDNA microarray Translation machinery Nutrient acquisition processes 

Supplementary material

580_2011_1325_MOESM1_ESM.doc (858 kb)
Supplementary Table 1 (DOC 857 kb)
580_2011_1325_MOESM2_ESM.doc (937 kb)
Supplementary Table 2 (DOC 937 kb)

References

  1. Alby K, Bennett RJ (2009) Stress-induced phenotypic switching in Candida albicans. Mol Biol Cell 20:3178–3191PubMedCrossRefGoogle Scholar
  2. Audia JP, Patton MC, Winkler HH (2008) DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii. Appl Environ Microbiol 74:7809–7812PubMedCrossRefGoogle Scholar
  3. Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukhopadhyay G, Prasad R (2007) A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopathologia 164:1–17PubMedCrossRefGoogle Scholar
  4. Biswas S, Van Dijck P, Datta A (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71:348–376PubMedCrossRefGoogle Scholar
  5. Cao F, Lane S, Raniga PP, Lu Y, Zhou Z, Ramon K, Chen J, Liu H (2006) The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 17:295–307PubMedCrossRefGoogle Scholar
  6. Carruthers MD, Minion C (2009) Transcriptome analysis of Escherichia coli O157:H7 EDL933 during heat shock. FEMS Microbiol Lett 295:96–102PubMedCrossRefGoogle Scholar
  7. Doedt T, Krishnamurthy S, Bockmuhl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF (2004) APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15:3167–3180PubMedCrossRefGoogle Scholar
  8. Enjalbert B, Nantel A, Whiteway M (2003) Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14:1460–1467PubMedCrossRefGoogle Scholar
  9. Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17:1018–1032PubMedCrossRefGoogle Scholar
  10. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728PubMedGoogle Scholar
  11. Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543PubMedCrossRefGoogle Scholar
  12. Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186:7796–7803PubMedCrossRefGoogle Scholar
  13. Ghalehnoo ZR, Rashki A, Najimi M, Dominguez A (2010) The role of diclofenac sodium in the dimorphic transition in Candida albicans. Microb Pathog 48(3–4):110–115PubMedCrossRefGoogle Scholar
  14. Harcus D, Nantel A, Marcil A, Rigby T, Whiteway M (2004) Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 15:4490–4499PubMedCrossRefGoogle Scholar
  15. Herrero AB, Lopez MC, Garcia S, Schmidt A, Spaltmann F, Ruiz-Herrera J, Dominguez A (1999) Control of filament formation in Candida albicans by polyamine levels. Infect Immun 67:4870–4878PubMedGoogle Scholar
  16. Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16:2903–2912PubMedCrossRefGoogle Scholar
  17. Land GA, McDonald WC, Stjernholm RL, Friedman L (1975) Factors affecting filamentation in Candida albicans: changes in respiratory activity of Candida albicans during filamentation. Infect Immun 12:119–127PubMedGoogle Scholar
  18. Lane S, Zhou S, Pan T, Dai Q, Liu H (2001) The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol Cell Biol 21:6418–6428PubMedCrossRefGoogle Scholar
  19. Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153PubMedCrossRefGoogle Scholar
  20. Liu TT, Znaidi S, Barker KS, Xu L, Homayouni R, Saidane S, Morschhauser J, Nantel A, Raymond M, Rogers PD (2007) Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 6:2122–2138PubMedCrossRefGoogle Scholar
  21. Maicas S, Moreno I, Nieto A, Gomez M, Sentandreu R, Valentin E (2005) In silico analysis for transcription factors with Zn(II)(2)C(6) binuclear cluster DNA-binding domains in Candida albicans. Comp Funct Genomics 6:345–356PubMedCrossRefGoogle Scholar
  22. Murad AM, d’Enfert C, Gaillardin C, Tournu H, Tekaia F, Talibi D, Marechal D, Marchais V, Brown AJ Cottin J (2001) Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42:981–993PubMedCrossRefGoogle Scholar
  23. Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465PubMedCrossRefGoogle Scholar
  24. Oberholzer U, Nantel A, Berman J, Whiteway M (2006) Transcript profiles of Candida albicans cortical actin patch mutants reflect their cellular defects: contribution of the Hog1p and Mkc1p signaling pathways. Eukaryot Cell 5:1252–1265PubMedCrossRefGoogle Scholar
  25. Regenberg B, Grotkjaer T, Winther O, Fausboll A, Akesson M, Bro C, Hansen LK, Brunak S, Nielsen J (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7:R107PubMedCrossRefGoogle Scholar
  26. Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 100:11007–11012PubMedCrossRefGoogle Scholar
  27. Slutsky B, Buffo J, Soll DR (1985) High-frequency switching of colony morphology in Candida albicans. Science (New York) 230:666–669CrossRefGoogle Scholar
  28. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR (1987) "White-opaque transition": a second high-frequency switching system in Candida albicans. J Bacteriol 169:189–197PubMedGoogle Scholar
  29. Staib P, Morschhauser J (2007) Chlamydospore formation in Candida albicans and Candida dubliniensis—an enigmatic developmental programme. Mycoses 50:1–12PubMedCrossRefGoogle Scholar
  30. Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324PubMedCrossRefGoogle Scholar
  31. Yin Z, Stead D, Walker J, Selway L, Smith DA, Brown AJ, Quinn J (2009) A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress-activated MAPK in regulating the stress-induced proteome. Proteomics 9:4686–4703PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ahmad Rashki
    • 2
  • Zahra Rashki Ghalehnoo
    • 3
  • Angel Dominguez
    • 1
  1. 1.Departamento de Microbiología y Genética, CIETUS, IBFGUniversidad de Salamanca/CSICSalamancaSpain
  2. 2.Faculty of Veterinary Medicine, Department of PhysiopathologyUniversity of ZabolZabolIran
  3. 3.Department of Microbiology and ParasitologyFaculty of Medicine of Zabol University of Medical SciencesZabolIran

Personalised recommendations