Skip to main content

Advertisement

Log in

Comparison of novel xenograft (bovine fetal growth plate) and allograft effects on experimental bone defect healing in rabbit

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Large bone defects resulting from trauma, tumors, osteitis, implant loosening, or corrective osteotomies require surgical therapy because spontaneous regeneration is limited to relatively small defects. Currently, transplantation of autografts or allografts, mineral bone substitutes, and callus distraction are the most commonly used techniques for skeletal reconstruction. Each method has significant limitations, e.g., availability and biological or biomechanical reasons. This study was designed to evaluate allograft and new xenograft (bovine fetal growth plate) effects on the bone healing process. Twenty male New Zealand White rabbits were used in this study. In the allograft group, the defect was filled by fresh allogeneic cortical graft; in the xenograft group, the defect was filled by a segment of bovine fetal growth plate and was fixed by cerclage wire. Radiological, histopathological, and biomechanical evaluations were performed and results were scored and analyzed statistically. Statistical tests did not support significant differences between the two groups radiographically at the 14th postoperative day (P > 0.05). There was a significant difference in bone formation at the 28th, 42nd, and 56th postoperative days. There were significant radiological differences for bone union and remodeling by the 42nd day postoperatively (P < 0.05). The xenograft was superior to the allograft by the 56th postoperative day for radiological bone formation (P < 0.03); histopathological and biomechanical evaluation revealed no significant differences between the two groups. It can be concluded that the superior bone healing process in the xenograft group was due to the presence of some osteoinduction proteins in bovine fetal growth plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrek T, Johansson C (2001) Osteoinduction, osteoconduction and osteointegration. Eur Spine J 10:S96–S101 doi:10.1007/s005860100282

    Article  Google Scholar 

  • Alexander JW (1985) Leonard’s orthopedic surgery of the dog and cat. Saunders, Florida, pp 43–48

    Google Scholar 

  • Alexander JW (1987) Bone grafting. Vet Clin North Am Small Anim Pract 17:811–819

    PubMed  CAS  Google Scholar 

  • An YH, Friedman RJ (1999) Animal models in orthopedic research. CRC, Boca Raton, FL, pp 204–205

    Google Scholar 

  • Anderson HC, Hodges PT, Aguilera XM, Missana L, Moylan PE (2000) Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem 48:1493–1502

    PubMed  CAS  Google Scholar 

  • Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res(329):300–309 doi:10.1097/00003086-199608000-00037

  • Bauer TW, Muschler GF (2000) Bone graft materials: an overview of basic science. Clin Orthop Relat Res 371:10–27 doi:10.1097/00003086-200002000-00003

    Article  PubMed  Google Scholar 

  • Bolander ME, Galian G (1983) The use of demineralize bone matrix in the repair of segmental defect. J Bone Jt Surg 68A:1264–1274

    Google Scholar 

  • Bostrom MP, Yang X, Kennan M, Sandhu H, Dicarlo E, Lane JM (2001) An unexpected outcome during testing of commercially available demineralized bone graft materials: how safe are the nonallograft components. Spine 26:1425–1428 doi:10.1097/00007632-200107010-00007

    Article  PubMed  CAS  Google Scholar 

  • Brinker WO, Piermattei DL, Flo GL (1997) Bone grafting. Small animal orthopedics and fracture repair. Saunders, Florida, pp 147–153

    Google Scholar 

  • Callon DP, Rohrer MD (1993) Use of bovine-derived hydroxyapatite in the treatment of edentulous ridge defets: a human clinical and histologic case report. J Periodontol 64:575–582

    Google Scholar 

  • Dehghani SN, Bigham AS, Torabi Nezhad S, Shafiei Z (2008) Effect of bovine foetal growth plate as a new xenograft in experimental bone defect healing: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 9:91–99 doi:10.1007/s10561-008-9062-7

    Article  PubMed  CAS  Google Scholar 

  • Fitch R, Kerwin S, Newman-Gage H, Sinibaldi KR (1997) Bone autografts and allografts in dogs. Compend Contin Educ Pract Vet 19:558–575

    Google Scholar 

  • Fox SM (1984) Cancellous bone grafting in the dog: an overview. J Am Anim Hosp Assoc 20:840–848

    Google Scholar 

  • Friedlaender GE (1987) Bone grafts: the basic science rationale for clinical applications. J Bone Joint Surg Am 69:786–790

    PubMed  CAS  Google Scholar 

  • Goldberg VM, Stevenson S, Shaffer JW, Davy D, Klein L, Zika J, Field G (1990) Biological and physical properties of autologous vascularized fibular grafts in dogs. J Bone Joint Surg Am 72:801–810

    PubMed  CAS  Google Scholar 

  • Griffon DJ, McLaughlin RM, Hoskinson JJ (1996) Effects of a bone-inducing agent drived from a cultured human osteosarcoma cell line after orthopedic and heterotopic implantation in the dog. Vet Comp Orthop Traumatol 9:22–28

    Google Scholar 

  • Hashimzume H, Tamaki T, Oura H, Minamide A (1998) Changes in the extracellular matrix on the surface of sintered bovine bone implanted in the femur of a rabbit: an immunohistochemical study. J Orthop Sci 3:42–53 doi:10.1007/s007760050020

    Article  Google Scholar 

  • Heiple KG, Goldberg VM, Powell AE, Bos GD, Zika JM (1987) Biology of cancellous bone grafts. Orthop Clin North Am 18:179–185

    PubMed  CAS  Google Scholar 

  • Hollinger JO, Schmitz JP, Mark DE, Seyfer AE (1990) Osseus wound healing with xenogenic bone implants with a biodegrable carrier. Surgery 107:50–54

    PubMed  CAS  Google Scholar 

  • Hollinger JO, Brekke J, Gruskin E, Lee D (1996) Role of bone substitutes. Clin Orthop Relat Res(324):55–65 doi:10.1097/00003086-199603000-00008

  • Inoue K, Ohgushi H, Yoshikawa T, Okumura M, Sempuku T, Tamai S, Dohi Y (1997) The effect of aging on bone formation in porous hydroxyapatite: biochemical and histologic analysis. J Bone Miner Res 12:989–994 doi:10.1359/jbmr.1997.12.6.989

    Article  PubMed  CAS  Google Scholar 

  • Karaismailoglu TN, Tomak Y, Andac A, Ergun E (2002) Comparison of autograft, coralline graft and xenograft in promoting posterior spinal fusion. Acta Orthop Traumatol Turc 36:147–154

    PubMed  Google Scholar 

  • Khan SN, Cammisa FPJ, Sandhu HS, Diwan AD, Girardi FP, Lane JM (2005) The biology of bone grafting. J Am Acad Orthop Surg 13:77–86

    PubMed  Google Scholar 

  • Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H (1998) BMP-induced osteogenesis on the surface of hydroxyapatite with geomatrically feasible and non feasible structures: Topology of osteogenesis. J Biomed Mater Res 39:190–199

    PubMed  CAS  Google Scholar 

  • Lane JM, Sandhu HS (1987) Current approach to experimental bone grafting. Orthop Clin North Am 18:213–225

    PubMed  CAS  Google Scholar 

  • McLaughlin RM, Roush JK (1998) Autologous cancellous and cortico-cancellous bone grafting. Vet Med 93:1071–1074

    Google Scholar 

  • Minamide A, Tamaki T, Kawakami M, Hashizume H, Yoshida M, Sakada R (1999) Experimental spine fusion using sintered bovine bone coated with type I collagen and recombinant human bone morphogenetic protein-2. Spine 24:1863–1872 doi:10.1097/00007632-199909150-00002

    Article  PubMed  CAS  Google Scholar 

  • Oonishi H, Kushitani S, Yasukawa E, Kawakami H, Nakata A, Koh S, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325 doi:10.1097/00003086-199701000-00041

    Article  PubMed  Google Scholar 

  • Pekler RR, Friedlander GE (1987) Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am 18:235–239

    Google Scholar 

  • Ripamonti U, Magan A, Ma S, Van den Heever B, Moehl T, Reddi AH (1991) Xenogenic osteogenin, a bone morphogenetic protein, and demineralized bone matrices, including human, induce bone differentiation in athymic rats and baboons. Matrix Biol 11:404–411

    CAS  Google Scholar 

  • Rosier RN, O’Keefe RJ, Hicks DG (1998) The potential role of transforming growth factor beta in fracture healing. Clin Orthop Relat Res 355:S294–S300 doi:10.1097/00003086-199810001-00030

    Article  PubMed  Google Scholar 

  • Salama R (1983) Xenogenic bone grafting in humans. Clin Orthop Relat Res 174:113–121

    PubMed  Google Scholar 

  • Shafiei Z, Bigham AS, Dehghani SN, Torabi NS (2008) Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank (in press)

  • Tizard IR (2004) Veterinary immunology: an introduction. Saunders, Philadelphia, pp 361–362

    Google Scholar 

  • Trevor PB, Stevenson S, Carrig CB, Waldron DR, Smith MM (1992) Evaluation of biocompatible osteoconductive polymer as an orthopedic implant in dogs. J Am Vet Med Assoc 200:1651–1660

    PubMed  CAS  Google Scholar 

  • Tuominen T, Jamsa T, Tuukkanen J, Nieminen P, Lindholm TC, Lindholm TS, Jalovaara P (2000) Native bovine bone morphogenetic protein improves the potential of biocoral to heel segmental canine ulnar defects. Int Orthop 24:289–294 doi:10.1007/s002640000164

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Mikulski AJ, Lietz A (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci U S A 76:1928–1832 doi:10.1073/pnas.76.4.1828

    Article  Google Scholar 

  • Urist MF, Sato K, Brownell AG (1983) Human bone morphogenetic protein. Proc Soc Exp Biol Med 173:194–199

    PubMed  CAS  Google Scholar 

  • Young WF, Rosenwasser RH (1993) An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine 18:1123–1124 doi:10.1097/00007632-199307000-00002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bigham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigham, A.S., Dehghani, S.N., Shafiei, Z. et al. Comparison of novel xenograft (bovine fetal growth plate) and allograft effects on experimental bone defect healing in rabbit. Comp Clin Pathol 18, 345–351 (2009). https://doi.org/10.1007/s00580-009-0819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-009-0819-6

Keywords

Navigation