Skip to main content
Log in

Kinetic properties of dehydroascorbic acid transport in erythrocytes of young and adult beagle dogs

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Kinetic properties of dehydroascorbic acid (DHA) transport were studied in erythrocytes of beagle dogs at 1 and 12 months. DHA uptake was much faster in erythrocytes of dogs at 1 than 12 months. Young dogs showed much greater affinity for DHA than adult dogs and the rate of DHA uptake was not affected by glucose. It was due to the presence of fetal erythrocytes with high activity of Glut-1 glucose transporter in young dogs. In adult dogs, DHA uptake was slow and competitively inhibited by physiological concentrations of glucose. Glut-4 was identified as the carrier protein responsible for DHA uptake in erythrocytes of adult dogs. Glut-4 was hardly detectable in neonatal dogs, but increased to adult levels by 3 months as fetal erythrocytes were eliminated and switched to adult cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banhegyi G, Braun L, Miklos C, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803. doi:10.1016/S0891-5849(97)00062-2

    Article  PubMed  CAS  Google Scholar 

  • Bianchi J, Rose R (1986) Glucose-independent transport of dehydroascorbic acid in human erythrocytes. Proc Soc Exp Biol Med 181:333–337

    PubMed  CAS  Google Scholar 

  • Braun L, Csala M, Puossu A, Garzo T, Mandl J, Banhegyi G (1996) Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes. FEBS Lett 388:173–176. doi:10.1016/0014-5793(96)00548-0

    Article  PubMed  CAS  Google Scholar 

  • Ching S, Mahan DC, Dabrowski K (2001) Liver L-gulonolactone oxidase activity and tissue ascorbic acid concentration in nursing pigs and the effect of various weaning ages. J Nutr 131:2002–2006

    PubMed  CAS  Google Scholar 

  • Craik JD, Markovich D (2000) Rapid Glut 1 mediated glucose transport in erythrocytes from the grey-headed fruit bat (Pteropus poliocephalus). Comp Biochem Physiol A 126:45–55

    CAS  Google Scholar 

  • Craik JD, Young JD, Cheeseman CI (1998) Glut-1 mediation of rapid glucose transport in dolphin (Tursiops truncates) red blood cells. Am J Physiol 274:R112–R119

    PubMed  CAS  Google Scholar 

  • Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A 86:6377–6381. doi:10.1073/pnas.86.16.6377

    Article  PubMed  CAS  Google Scholar 

  • Hishiyama N, Kayanuma H, Matsui T, Yano H, Suganuma T, Funaba M, Fujise H (2006) Plasma concentration of vitamin C in dogs with a portosystemic shunt. Can J Vet Res 70:305–307

    PubMed  CAS  Google Scholar 

  • Lee P, Brown ME, Hutzler PT (1976) Blood volume changes and production and destruction of erythrocytes in newborn dogs. Am J Vet Res 37:561–565

    PubMed  CAS  Google Scholar 

  • Lee AH, Spano JS, Swaim SF, McGuire JA, Hughes KS (1986) Evaluation of plasma and buffy coat ascorbic acid concentrations in dogs before and after a 24-hour fast. Am J Vet Res 47:2000–2003

    PubMed  CAS  Google Scholar 

  • May JM, Qu ZC, Whitesell RR (1995) Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes. Biochemistry 34:12721–12728. doi:10.1021/bi00039a031

    Article  PubMed  CAS  Google Scholar 

  • May JM, Qu ZC, Whitesell RR, Cobb CE (1996) Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Biol Med 20:543–551. doi:10.1016/0891-5849(95)02130-2

    Article  PubMed  CAS  Google Scholar 

  • May JM, Qu ZC, Cobb CE (2001) Recycling of the ascorbate free radical by human erythrocyte membranes. Free Radic Biol Med 31:117–124. doi:10.1016/S0891-5849(01)00566-4

    Article  PubMed  CAS  Google Scholar 

  • Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, Delaunay J, Sitbon M, Taylor N (2008a) Erythrocyte Glut 1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 132:1039–1048. doi:10.1016/j.cell.2008.01.042

    Article  PubMed  CAS  Google Scholar 

  • Montel-Hagen A, Blanc L, Boyer-Clavel M, Jacqet C, Vidal M, Stibon M, Taylor N (2008b) The Glut1 and Glut4 glucose transporters are differently expressed during perinatal and postnatal erythropoiesis. Blood 112:4729–4738. doi:10.1182/blood-2008-05-159269

    Article  PubMed  CAS  Google Scholar 

  • Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688

    PubMed  CAS  Google Scholar 

  • Ogawa E (2008) Age-dependent changes in uptake and recycling of ascorbic acid in erythrocytes of beagle dogs. J Comp Physiol [B] 178:699–704. doi:10.1007/s00360-008-0258-8

    CAS  Google Scholar 

  • Padh H (1991) Vitamin C: Newer insights into its biochemical functions. Nutr Rev 49:65–70

    Article  PubMed  CAS  Google Scholar 

  • Rose RC (1986) Metabolism and transport of dehydroascorbic acid in erythrocytes of ‘Spontaneous diabetic BB/W’ Wistar rats. Metabolism 35:619–621. doi:10.1016/0026-0495(86)90167-8

    Article  PubMed  CAS  Google Scholar 

  • Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms Glut 1 and Glut 3 transport dehydroascorbic acid. J Biol Chem 272:18982–18989. doi:10.1074/jbc.272.30.18982

    Article  PubMed  CAS  Google Scholar 

  • Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M (2000) Dehydroascorbic acid transport by Glut 4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 275:28246–28253

    PubMed  CAS  Google Scholar 

  • Savini I, Catani MV, Duranti G, Ceci R, Sabatini S, Avigliano L (2005) Vitamin C homeostasis in skeletal muscle cells. Free Radic Biol Med 38:898–907. doi:10.1016/j.freeradbiomed.2004.12.009

    Article  PubMed  CAS  Google Scholar 

  • Szarka A, Stadler K, Jenei V, Margittai E, Csala M, Jakus J, Mandl J, Banhegyi G (2002) Ascorbyl free radical and dehydroascorbate formation in rat liver endoplasmic reticulum. J Bioen Biomem 34:317–323. doi:doi:10.1023/A:1020212720330

    Article  CAS  Google Scholar 

  • Vera JC, Rivas CI, Fishbarg J, Golde DW (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79–82. doi:10.1038/364079a0

    Article  PubMed  CAS  Google Scholar 

  • Widdas WF (1955) Hexose permeability of foetal erythrocytes. J Physiol 127:318–327

    PubMed  CAS  Google Scholar 

  • Wieczorke R, Dlugai S, Krampe S, Boles E (2003) Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol Biochem 13:123–134. doi:10.1159/000071863

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported in part by Kitayama Labes Co. Ltd., Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, E. Kinetic properties of dehydroascorbic acid transport in erythrocytes of young and adult beagle dogs. Comp Clin Pathol 18, 399–405 (2009). https://doi.org/10.1007/s00580-009-0817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-009-0817-8

Keywords

Navigation