Groupoid Models for the C*-Algebra of Labelled Spaces

Abstract

We define a groupoid from a labelled space and show that it is isomorphic to the tight groupoid arising from an inverse semigroup associated with the labelled space. We then define a local homeomorphism on the tight spectrum that is a generalization of the shift map for graphs, and show that the defined groupoid is isomorphic to the Renault-Deaconu groupoid for this local homeomorphism. Finally, we show that the C*-algebra of this groupoid is isomorphic to the C*-algebra of the labelled space as introduced by Bates and Pask.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    This is different from Boava et al. (2017a). The authors realized that the original description of \(\mathscr {L}^{\infty }\) was incorrect—for instance, (Boava et al. 2017a, Proposition 4.18) did not hold with \(\mathscr {L}^{\infty }\) as originally described. With this change, all results involving \(\mathscr {L}^{\infty }\) hold.

References

  1. Bates, T., Carlsen, T.M., Pask, D.: \(C^*\)-algebras of labelled graphs III–\(K\)-theory computations. Ergodic Theory Dyn. Syst. 37(2), 337–368 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Bates, T., Pask, D.: \(C^*\)-algebras of labelled graphs. J. Oper. Theory 57(1), 207–226 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bates, T., Pask, D.: \(C^*\)-algebras of labelled graphs. II. Simplicity results. Math. Scand. 104(2), 249–274 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Boava, G., de Castro, G.G., Mortari, F.de L.: Inverse semigroups associated with labelled spaces and their tight spectra. Semigroup Forum 94(3), 582–609 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Boava, G., de Castro, G.G., Mortari, FdL: C*-algebras of labelled spaces and their diagonal C*-subalgebras. J. Math. Anal. Appl. 456(1), 69–98 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Carlsen, T.M.: Cuntz–Pimsner \(C^*\)-algebras associated with subshifts. Int. J. Math. 19(1), 47–70 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Carlsen, T.M., Matsumoto, K.: Some remarks on the \(C^*\)-algebras associated with subshifts. Math. Scand. 95(1), 145–160 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Carlsen, T.M., Ortega, E., Pardo, E.: \(C^*\)-algebras associated to Boolean dynamical systems. J. Math. Anal. Appl. 450(1), 727–768 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Cuntz, J.: Simple \(C^*\)-algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Cuntz, J., Krieger, W.: A class of \(C^{\ast } \)-algebras and topological Markov chains. Invent. Math. 56(3), 251–268 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Deaconu, V.: Groupoids associated with endomorphisms. Trans. Am. Math. Soc. 347(5), 1779–1786 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Exel, R.: Inverse semigroups and combinatorial \(C^\ast \)-algebras. Bull. Braz. Math. Soc. (N.S.) 39(2), 191–313 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Exel, R., Laca, M.: Cuntz-Krieger algebras for infinite matrices. J. Reine Angew. Math. 512, 119–172 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Farthing, C., Muhly, P.S., Yeend, T.: Higher-rank graph \(C^*\)-algebras: an inverse semigroup and groupoid approach. Semigroup Forum 71(2), 159–187 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Kumjian, A., Pask, D., Raeburn, I., Renault, J.: Graphs, groupoids, and Cuntz-Krieger algebras. J. Funct. Anal. 144(2), 505–541 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Lawson, M.V.: Non-commutative Stone duality: inverse semigroups, topological groupoids and \(C^\ast \)-algebras. Int. J. Algebra Comput. 22(6), 1250058 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Marrero, A.E., Muhly, P.S.: Groupoid and inverse semigroup presentations of ultragraph \(C^*\)-algebras. Semigroup Forum 77(3), 399–422 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Paterson, A.L.T.: Groupoids, inverse semigroups, and their operator algebras, volume 170 of Progress in Mathematics. Birkhäuser Boston Inc, Boston (1999)

    Google Scholar 

  19. Paterson, A.L.T.: Graph inverse semigroups, groupoids and their \(C^\ast \)-algebras. J. Oper. Theory 48(3, suppl), 645–662 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Raeburn, I: Graph algebras, volume 103 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2005)

  21. Renault, J.: A groupoid approach to \(C^{\ast } \)-algebras, volume 793 of Lecture Notes in Mathematics. Springer, Berlin (1980)

    Google Scholar 

  22. Renault, J: Cuntz-like algebras. In Operator theoretical methods (Timişoara, 1998), pages 371–386. Theta Found., Bucharest (2000)

  23. Stone, M.H.: Postulates for Boolean algebras and generalized boolean algebras. Am. J. Math. 57(4), 703–732 (1935)

    MathSciNet  MATH  Google Scholar 

  24. Thomsen, K.: Semi-étale groupoids and applications. Ann. Inst. Fourier (Grenoble) 60(3), 759–800 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Tomforde, M.: A unified approach to Exel-Laca algebras and \(C^\ast \)-algebras associated to graphs. J. Oper. Theory 50(2), 345–368 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Webster, S.B.G.: The path space of a directed graph. Proc. Am. Math. Soc. 142(1), 213–225 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Yeend, T.: Groupoid models for the \(C^*\)-algebras of topological higher-rank graphs. J. Oper. Theory 57(1), 95–120 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gilles G. de Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boava, G., de Castro, G.G. & Mortari, F.d.L. Groupoid Models for the C*-Algebra of Labelled Spaces. Bull Braz Math Soc, New Series 51, 835–861 (2020). https://doi.org/10.1007/s00574-019-00177-6

Download citation

Keywords

  • C*-algebra
  • Labelled space
  • Groupoid

Mathematics Subject Classification

  • Primary 46L55
  • Secondary 20M18
  • 05C20
  • 05C78