Advertisement

Modular Invariants of Finite Affine Linear Groups

  • Yin Chen
Article

Abstract

We study modular invariants of finite affine linear groups over a finite field \(\mathbb {F}_{q}\) under affine actions and linear actions. We generalize a result of Chuai (J Algebra 318:710–722, 2007, Theorem 4.2) to any m-folds affine actions. Suppose \(G\leqslant \mathrm{GL}(n,\mathbb {F}_{q})\) is a subgroup and W denotes the canonical module of \(\mathrm{GL}(n,\mathbb {F}_{q})\). We denote by \(\mathbb {F}_{q}[W]^{G}\) the invariant ring of G acting linearly on W and denote by \(\mathbb {F}_{q}[W_{n+1}]^{AG(W^{*})}\) the invariant ring of the affine group \(AG(W^{*})\) of G acting canonically on \(W_{n+1}:=W\oplus \mathbb {F}_{q}\). We show that if \(\mathbb {F}_{q}[W]^{G}=\mathbb {F}_{q}[f_{1},f_{2},\ldots ,f_{s}]\), then \(\mathbb {F}_{q}[W_{n+1}]^{AG(W^{*})}=\mathbb {F}_{q}[f_{1},f_{2},\ldots ,f_{s},h_{n+1}]\), where \(h_{n+1}\) denotes the \((n+1)\)-th Mui’s invariant of degree \(q^{n}\). Let \(\mathrm{AGL}_{1}(\mathbb {F}_{p})\) be the 1-dimensional affine general linear groups over the prime field \(\mathbb {F}_{p}\). We find a generating set for the ring of vector invariants \(\mathbb {F}_{p}[mW_{2}]^{\mathrm{AGL}_{1}(\mathbb {F}_{p})}\) and determine the Noether’s number \(\upbeta _{mW_{2}}(\mathrm{AGL}_{1}(\mathbb {F}_{p}))\) for any \(m\in \mathbb {N}^{+}\).

Keywords

Modular invariants Finite affine group Noether’s number 

Mathematics Subject Classification

13A50 

Notes

Acknowledgements

This research was supported by NSF of China (No. 11401087) and the Fundamental Research Funds for the Central Universities (2412017FZ001) at NENU. The author would like to thank the referee for careful reading and helpful comments, especially generalizing the results in Sects. 2 and 3 from the prime field \(\mathbb {F}_{p}\) to any finite field \(\mathbb {F}_{q}\). The author also thanks David L. Wehlau for his patience, help and encouragement.

References

  1. Benson, D.J.: Polynomial Invariants of Finite Groups. London Mathematical Society Lecture Note Series, vol. 190. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bonnafé, C., Kemper, G.: Some complete intersection symplectic quotients in positive characteristic: invariants of a vector and a covector. J. Algebra 335, 96–112 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Campbell, H.E.A., Hughes, I.: Vector invariants of \(U_{2}({{\mathbb{F}}}_{p})\): a proof of a conjecture of Richman. Adv. Math. 126, 1–20 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Campbell, H.E.A., Shank, R.J., Wehlau, D.L.: Vector invariants for the two-dimensional modular representation of a cyclic group of prime order. Adv. Math. 225, 1069–1094 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Campbell, H.E.A., Wehlau, D.L.: Modular Invariant Theory. Encyclopaedia of Mathematical Sciences, vol. 139. Springer, Berlin (2011)zbMATHGoogle Scholar
  7. Chen, Y.: On modular invariants of a vector and a covector. Manuscr. Math. 144, 341–348 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chen, Y.: Vector invariants for two-dimensional orthogonal groups over finite fields (2016). arXiv:1612.06039 (under review)
  9. Chen, Y., Wehlau, D.L.: Modular invariants of a vector and a covector: a proof of a conjecture of Bonnafe–Kemper. J. Algebra 472, 195–213 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Chuai, J.: Invariants of modular groups. J. Algebra 318, 710–722 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Derksen, H., Kemper, G.: Computational Invariant Theory. Encyclopaedia of Mathematical Sciences, vol. 30. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  12. Dickson, L.E.: A fundamental system of invariants of the general modular linear group with a solution of the form problem. Trans. Am. Math. Soc. 12, 75–98 (1911)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Hungerford, T.W.: Algebra. Graduate Texts in Mathematics, vol. 73, 12th edn. Springer, Berlin (2003)zbMATHGoogle Scholar
  14. Kemper, G.: Calculating invariant rings of finite groups over arbitrary fields. J. Symb. Comput. 21, 351–366 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Mui, H.: Modular invariant theory and cohomology algebras of symmetric groups. J. Fac. Sci. Univ. Tokyo 22, 319–369 (1975)MathSciNetzbMATHGoogle Scholar
  16. Neusel, M.D., Smith, L.: Invariant Theory of Finite Groups. Mathematics Surveys and Monographs, vol. 94. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  17. Richman, D.L.: On vector invariants over finite fields. Adv. Math. 81, 30–65 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Shank, R.J., Wehlau, D.L.: Computing modular invariants of \(p\)-groups. J. Symb. Comput. 34, 307–327 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Steinberg, R.: On Dickson’s theorem on invariants. J. Fac. Sci. Univ. Tokyo 34, 699–707 (1987)MathSciNetzbMATHGoogle Scholar
  20. Wehlau, D.L.: Invariants for the modular cyclic group of prime order via classical invariant theory. J. Eur. Math. Soc. 15, 775–803 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations