Abstract
A theorem of Viana says that almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. In this note we extend this result to cocycles on any noncompact classical semisimple Lie group.
This is a preview of subscription content, access via your institution.
Notes
We need \(C^{1+\alpha }\) regularity in order to apply the so-called Pesin’s theory (providing a measurable family of invariant manifolds with many good properties). In fact, it is known (see Bonatti et al. 2013 for instance) that Pesin’s theory may fail in \(C^1\) regularity.
I.e., a semi-algebraic set is an element of the smallest Boolean ring of subsets of \(\mathbb {R}^n\) containing all subsets of the form \(\{(x_1,\ldots ,x_n)\in \mathbb {R}^n: P(x_1,\ldots , x_n)>0\}\) with \(P\in \mathbb {R}[X_1,\ldots ,X_n]\).
These implications fail in the complex case; for example the compact group \(\mathrm {SU}(d)\) is Zariski-dense in \(\mathrm {SL}(d,\mathbb {C})\).
References
Aoun, R.: Transience of algebraic varieties in linear groups—applications to generic Zariski density. Ann. Inst. Fourier (Grenoble) 63, 2049–2080 (2013)
Avila, A.: Density of positive Lyapunov exponents for \({\rm SL}(2,{\mathbb{R}})\)-cocycles. J. Am. Math. Soc. 24(4), 999–1014 (2011)
Avila, A., Crovisier, S., Wilkinson, A.: Diffeomorphisms with positive metric entropy. Publ. Math. Inst. Hautes Études Sci. 124, 319–347 (2016)
Avila, A., Krikorian, R.: Monotonic cocycles. Invent. Math. 202(1), 271–331 (2015)
Avila, A., Viana, M.: Simplicity of Lyapunov spectra: a sufficient criterion. Port. Math. 64, 311–376 (2007)
Avila, A., Viana, M.: Extremal Lyapunov exponents: an invariance principle and applications. Invent. Math. 181(1), 115–189 (2010)
Avila, A., Santamaria, J., Viana, M.: Holonomy invariance: rough regularity and applications to Lyapunov exponents. Astérisque 358, 13–74 (2013)
Barreira, L., Pesin, Y.: Exponents and Smooth Ergodic Theory. University Lecture Series, 23. American Mathematical Society, Providence, RI, xii+151 (2002)
Bochi, J.: Genericity of zero Lyapunov exponents. Ergod. Theory Dyn. Syst. 22, 1667–1696 (2002)
Bochi, J., Viana, M.: The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann. Math. 161, 1423–1485 (2005)
Bogachev, V.I.: Measure Theory, vol. 2. Springer, Berlin (2007)
Bonatti, C., Crovisier, S., Shinohara, K.: The \(C^{1+\alpha }\) hypothesis in Pesin theory revisited. J. Mod. Dyn. 7(4), 605–618 (2013)
Bonatti, C., Gómez-Mont, X., Viana, M.: Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 579–624 (2003)
Bonatti, C., Viana, M.: Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergod. Theory Dyn. Syst. 24, 1295–1330 (2004)
Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)
Breuillard, E.: A strong Tits alternative. arXiv:0804.1395 (2008)
Colonius, F., Kliemann, W.: The Dynamics of Control. With an appendix by Lars Grüne. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (2000)
Duarte, P., Klein, S.: Positive Lyapunov exponents for higher dimensional quasiperiodic cocycles. Commun. Math. Phys. 332(1), 189–219 (2014)
Furman, A.: Random walks on groups and random transformations. In: Hasselblatt. B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1A, pp. 931–1014. North-Holland, Amsterdam (2002)
Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)
Gibson, C.G., Wirthmüller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological Stability of Smooth Mappings. Lecture Notes in Mathematics, vol. 552. Springer, Berlin (1976)
Gol’dsheid, Y.I., Margulis, G.A.: Lyapunov exponents of a product of random matrices. Russ. Math. Surv. 44(5), 11–71 (1989)
Guivarc’h, Y., Raugi, A.: Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes. Isr. J. Math. 65(2), 165–196 (1989)
Knapp, A.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser Boston, Inc., Boston (2002)
Knill, O.: Positive Lyapunov exponents for a dense set of bounded measurable \({\rm SL}(2,{\mathbb{R}})\)-cocycles. Ergod. Theory Dyn. Syst. 12(2), 319–331 (1992)
Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices. In: Arnold, L., Wihstutz, V. (eds.) Lyapunov Exponents (Bremen, 1984). Lecture Notes in Mathematics, vol. 1886, pp. 56–73, Springer, New York (1986)
Moore, C.: Amenable groups of semi-simple groups and proximal flows. Isr. J. Math. 34, 121–138 (1979)
Palais, R.: Foundations of Global Non-linear Analysis. Benjamin, New York (1968)
Viana, M.: Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Ann. Math. 167(2), 643–680 (2008)
Xu, D.: Density of positive Lyapunov exponents for symplectic cocycles. J. Eur. Math. Soc. (JEMS) (2017) (to appear)
Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)
Acknowledgements
The authors are grateful to the referee for a careful reading of the manuscript and for useful suggestions that helped to improve the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Bessa is partially supported by FCT—‘Fundação para a Ciência e a Tecnologia’, through Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, project UID/MAT/00212/2013. Bochi is partially supported by project Fondecyt 1140202 (Chile). Varandas is partially supported by CNPq-Brazil.
About this article
Cite this article
Bessa, M., Bochi, J., Cambrainha, M. et al. Positivity of the Top Lyapunov Exponent for Cocycles on Semisimple Lie Groups over Hyperbolic Bases. Bull Braz Math Soc, New Series 49, 73–87 (2018). https://doi.org/10.1007/s00574-017-0048-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00574-017-0048-6
Keywords
- Lyapunov exponents
- Linear cocycles
- Semisimple Lie groups