Skip to main content
Log in

Elliptic equations with absorption in a half-space

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We give a necessary and sufficient condition, in the spirit of the classical works by Keller and Osserman, for the elliptic equation Δu = f (u) to have a solution in a half-space of RN. The function f is supposed to be nondecreasing and nonnegative, and we are interested in solutions whose range is where f > 0. The possibility of obtaining such a necessary and sufficient condition has been an open question for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Armstrong and B. Sirakov. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations, 36 (2011), 2011–2047.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bandle and M. Essen. On positive solutions of Emden equations in cone-like domains. Arch. Rational Mech. Anal., 112(4) (1990), 319–338.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg. Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal., 4(1) (1994), 59–78.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Berestycki, L. Caffarelli and L. Nirenberg. Further qualitative properties for elliptic equations in unbounded domains. Ann. ScuolaNorm. Sup. Pisa, 25 (1997), 69–94.

    MathSciNet  MATH  Google Scholar 

  5. Z. Chen, C.-S. Lin and W. Zou. Monotonicity and nonexistence results to cooperative systems in the half space. J. Funct. Anal., 266 (2014), 1088–1105.

    Article  MathSciNet  MATH  Google Scholar 

  6. M.G. Crandall, H. Ishii and P.-L. Lions. User’s guide to viscosity solutions of second-order partial differential equations. Bull. Amer. Math. Soc., 27(1) (1992), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Dancer. Some notes on the method of moving planes. Bull. Austral.Math. Soc., 46 (1992), 425–434.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Du. Order structure and topological methods in nonlinear partial differential equations. Series in PDE and Applications, World Scientific (2006).

    Book  MATH  Google Scholar 

  9. A. Farina. Liouville-type theorems for elliptic problems, in “Handbook of Differential Equations: Stationary Partial Differential Equations”, Vol. 4 (Michel Chipot, Editor) (2007), 483–591.

    MATH  Google Scholar 

  10. P. Felmer, M. Montenegro and A. Quaas. A note on the strong maximum principle and the compact support principle. J. Differential Equations, 246 (2009), 39–49.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, 2nd edition, Berlin-Heidelberg (2001).

    MATH  Google Scholar 

  12. J.B. Keller. On solutions of Δu = f (u). Comm. Pure Appl. Math., 10 (1957), 503–510.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Kondratiev, V. Liskevich and V. Moroz. Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains. Ann. Inst. H. Poincare Anal. Non Lineaire, 22(1) (2005), 25–43.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Marcus and L. Véron. Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ., 3 (2004), 637–652.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Osserman. On the inequality Δu ≥ f (u). Pac. J. Math., 7 (1957), 1641–1647.

    Article  MATH  Google Scholar 

  16. P. Pucci and J. Serrin. The maximum principle. Progress in Nonlinear Differential Equations and their Applications, 73. Birkhauser Verlag, Basel (2007).

  17. V. Rădulescu. Singular phenomena in nonlinear elliptic problems: from boundary blow-up solutions to equations with singular nonlinearities, in “Handbook of Differential Equations: Stationary Partial Differential Equations”, Vol. 4 (Michel Chipot, Editor) (2007), 483–591.

    Google Scholar 

  18. J.L. Vázquez. A strongmaximum principle for some quasilinear elliptic equations. Appl.Math. Optim., 12(3) (1984), 191–202.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sirakov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Melián, J., Quaas, A. & Sirakov, B. Elliptic equations with absorption in a half-space. Bull Braz Math Soc, New Series 47, 811–821 (2016). https://doi.org/10.1007/s00574-016-0189-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0189-z

Keywords

Mathematical subject classification

Navigation