Skip to main content
Log in

Transonic shock and rarefaction wave interactions of two-dimensional Riemann problems for the self-similar nonlinear wave system

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

This paper addresses the self-similar transonic irrotational flow in gas dynamics in two space dimensions.We consider a configuration that the incident shock becomes a transonic shock as it enters the sonic circle, interacts with the rarefaction wave downstream, and then becomes sonic. The rarefaction wave further downstream becomes sonic (degenerate) creating an unknown boundary for the governing system. We present the Riemann data for this configuration, provide the characteristic decomposition of the system, and formulate the boundary value problem for this configuration. The numerical results are presented, and a method to establish the existence result is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Canic, B. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection. Methods and Applications of Analysis, 7 (2000), 313–336.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Canic, B. L. Keyfitz and E. H. Kim. A free boundary problem for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks. Communications on Pure and Applied Mathematics, LV: (2002), 71–92.

    MATH  Google Scholar 

  3. S. Canic, B. L. Keyfitz and E. H. Kim. Mixed hyperbolic-elliptic systems in selfsimilar flows. Boletimda Sociedade Brasileira deMatemática, 32(3) (2001), 377–399.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Canic, B. L. Keyfitz and E. H. Kim. Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks. SIAM J. Math. Anal., 37(6) (2006), 1947–1977.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Q. Chen and M. Feldman. Global solutions to shock reflection by large-angle wedges for potential flow. Ann. of Math. (2), 171(2) (2010), 1067–1182.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Chen and B. Fang. Stability of transonic shocks in supersonic flow past a wedge. J. Differential Equations, 233(1) (2007), 105–135.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Courant and K. O. Friedrichs. Supersonic flow and shockwaves. SpringerVerlag, New York (1948).

    MATH  Google Scholar 

  8. V. Elling and T.-P. Liu. Supersonic flow onto a solid wedge. Comm. Pure Appl. Math., 61(10) (2008), 1347–1448.

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Dai and T. Zhang. Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics. Arch. Ration. Mech. Anal., 155(4) (2000), 277–298.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang and Y. Zheng. Transonic shock formation in a rarefaction Riemann problem for the 2D compressible Euler equations. SIAM J. Appl. Math., 69(3) (2008), 720–742.

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Hu and G. Wang. The interaction of rarefaction waves of a two-dimensional nonlinear wave system. Nonlinear Anal. Real World Appl., 22 (2015), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Jegdic, B. L. Keyfitz and S. Canic. Transonic regular reflection for the nonlinear wave system. Journal of Hyperbolic Differential Equations, 3(3) (2006), 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. H. Kim. A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation. J. Differential Equations, 248 (2010), 2906–2930.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. H. Kim. An interaction of a rarefaction wave and a transonic shock for the self-similar two-dimensional nonlinear wave system. Comm. Partial Differential Equations, 37(4) (2012), 610–646.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. H. Kim and C.-M. Lee. Transonic shock reflection problems for the self-similar two-dimensional nonlinear wave system. Nonlinear Anal., 79 (2013), 85–102.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Kurganov and E. Tadmor. Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differential Equations, 18(5) (2002), 584–608.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. D. Lax and X.-D. Liu. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput., 19(2) (1998), 319–340.

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Lei and Y. Zheng. A complete global solution to the pressure gradient equation. J. Differential Equations, 236(1) (2007), 280–292.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002).

    Book  MATH  Google Scholar 

  20. R. J. LeVeque et al. CLAWPACK 4. 3. http://www. amath. washington. edu/~claw/.

  21. J. Li, T. Zhang and S. Yang. Two dimensional Riemann problem in Gas Dynamics. Pitman Monographs and Surveys in Pure and AppliedMathematics, 98. Longman, Harlow (1998).

    Google Scholar 

  22. J. Li, T. Zhang and Y. Zheng. Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations. Comm. Math. Phys., 267(1) (2006), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. S. Morawetz. Potential theory for regular and Mach reflection of a shock at a wedge. Comm. Pure Appl. Math., 47 (1994), 593–624.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43 (1981), 357–372.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. W. Schulz-Rinne, J. P. Collins and H. M. Glaz. Numerical solutionof the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput., 14(6) (1993), 1394–1414.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Serre. Écoulements de fluides parfaits en deux variables indépendentes de type espace. Réflexion d’un choc plan par un dièdre compressif. Archive for Rational Mechanics and Analysis, 132 (1995), 15–36.

    Article  MathSciNet  Google Scholar 

  27. M. Sever. Admissibility of self-similar weak solutions of systems of conservation laws in two space variables and time. J. Hyperbolic Differ. Equ., 6(3) (2009), 433–481.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Song and Y. Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete Contin. Dyn. Syst., 24 (4) (2009), 1365–1380.

    Article  MathSciNet  MATH  Google Scholar 

  29. Q. Wang and Y. Zheng. The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics. Indiana Univ. Math. J., 63(2) (2014), 385–402.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. M. Tesdall, R. Sanders and B. L. Keyfitz. The triple point paradox for the nonlinear wave system. SIAM J. Appl. Math., 67(2) (2006), 321–336.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. M. Tesdall, R. Sanders and B. L. Keyfitz. Self-similar solutions for the triple point paradox in gasdynamics. SIAM J. Appl. Math., 68 (2008), 1360–1377.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Zhang and Y. Zheng. Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal., 21(3) (1990), 593–630.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Zheng. Two-dimensional regular shock reflection for the pressure gradient systemof conservation laws. ActaMath. Appl. Sin. Engl. Ser., 22(2) (2006), 177–210.

    Article  MATH  Google Scholar 

  34. Y. Zheng. Systems of conservation laws. Two-dimensional Riemann problems. Progress inNonlinearDifferential Equations and theirApplications, 38. Birkhäuser Boston, Inc., Boston, MA (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Heui Kim.

Additional information

Research supported by the National Science Foundation under grant DMS-1109202.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.H. Transonic shock and rarefaction wave interactions of two-dimensional Riemann problems for the self-similar nonlinear wave system. Bull Braz Math Soc, New Series 47, 431–444 (2016). https://doi.org/10.1007/s00574-016-0160-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0160-z

Keywords

Mathematical subject classification

Navigation