Skip to main content
Log in

A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Current biological knowledge supports the existence of a secondary group of cancer cells within the body of the tumour that exhibits stem cell-like properties. These cells are termed cancer stem cells, and as opposed to themore usual differentiated cancer cells, they exhibit highermotility, they are more resilient to therapy, and are able to metastasize to secondary locations within the organism and produce new tumours. The origin of the cancer stem cells is not completely clear; they seem to stem from the differentiated cancer cells via a transition process related to the epithelial-mesenchymal transition that can also be found in normal tissue. In the current work we model and numerically study the transition between these two types of cancer cells, and the resulting “ensemble” invasion of the extracellular matrix. This leads to the derivation and numerical simulation of two systems: an algebraic-elliptic system for the transition and an advection-reaction-diffusion system of Keller-Segel taxis type for the invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Andasari, A. Gerisch, G. Lolas, A.P. South and M.A.J. Chaplain. Mathematical modelling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol., (2011).

    Google Scholar 

  2. A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele and A.M. Thompson. Mathematical modelling of tumour invasion and metastasis. Comput. Math. Method., (2000).

    Google Scholar 

  3. P. Armitage and R. Doll. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer, (1954).

    Google Scholar 

  4. T. Brabletz, A. Jung, S. Spaderna, F. Hlubek and T. Kirchner. Opinion: migrating cancer stem cellsan integrated concept ofmalignant tumour progression. Nature Reviews Cancer, (2005).

    Google Scholar 

  5. M.A.J. Chaplain and G. Lolas. Mathematical modelling of cancer cell invasion of tissue. the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sciences, (2005).

    Google Scholar 

  6. A. Chertock and A. Kurganov. Asecond-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numerische Mathematik, (2008).

    MATH  Google Scholar 

  7. P. Domschke, D. Trucu, A. Gerisch and M. Chaplain. Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biology, 361 (2014), 41–60.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.C. Fisher. Multiple-mutation theory of carcinogenesis. Nature, (1958).

    Google Scholar 

  9. R. Ganguly and I.K. Puri. Mathematicalmodel for the cancer stem cell hypothesis. Cell Prolif, (2006).

    Google Scholar 

  10. D. Gao, L.T. Vahdat, S. Wong. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res., (2012).

    Google Scholar 

  11. A. Gerisch and M.A.J. Chaplain. Mathematical modelling of cancer cell invasion of tissue: local and nonlocal models and the effect of adhesion. J. Theor. Biol., (2008).

    Google Scholar 

  12. P.B. Gupta, C.L. Chaffer and R.A. Weinberg. Cancer stem cells: mirage or reality? Nat. Med., (2009).

    Google Scholar 

  13. M.D. Johnston, P.K. Maini, S. Jonathan-Chapman, C.M. Edwards and W.F. Bodmer. On the proportion of cancer stem cells in a tumour. J. Theor. Biology, (2010).

    Google Scholar 

  14. Y. Katsumo, S. Lamouille and R. Derynck. Tgf-β signaling and epithelialmesenchymal transition in cancer progression. Curr. Opin. Oncol., (2013).

    Google Scholar 

  15. E.F. Keller and L.A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol., (1970).

    Google Scholar 

  16. N. Kolbe. Mathematicalmodelling and numerical simulations of cancer invasion. Master’s thesis, University of Mainz, supervised by M. Lukacova-Medvidova, and N. Sfakianakis, (2013).

    Google Scholar 

  17. N. Kolbe, J. Katuchova, N. Sfakianakis, N. Hellmann and M. Lukacova-Medvidova. A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: The urokinase model. Appl. Math. Comput., (2015).

    Google Scholar 

  18. A. Kurganov and M. Lukacova-Medvidova. Numerical study of two-species chemotaxis models. Discr. Cont. Systems, (2014).

    Google Scholar 

  19. S.A. Mani, W. Guo, M.J. Liao. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, (2008).

    Google Scholar 

  20. S.R McDougall, A. Anderson, M.A.J. Chaplain and J.A. Sheratt. Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., (2002).

    Google Scholar 

  21. F. Michor. Mathematical models of cancer stem cells. J. Clin. Oncol., (2008).

    Google Scholar 

  22. A. Neagu, V. Mironov, I. Kosztin, B. Barz, M. Neagu, R.A. Moreno-Rodriguez, R.R. Markwald and G. Forgacs. Computational modelling of epithelial-mesenchymal transformations. Biosystems, (2010).

    Google Scholar 

  23. C.O. Nordling. A new theory on the cancer-inducing mechanism. Br. J. Cancer, (1953).

    Google Scholar 

  24. A.J. Perumpanani, J.A. Sherratt, J. Norbury and H.M. Byrne. Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis, (1996).

    Google Scholar 

  25. L. Preziosi. Cancer modelling and simulation. CRC Press, (2003).

    Book  MATH  Google Scholar 

  26. D.C. Radisky. Epithelial-mesenchymal transition. J. of Cell Science, (2005).

    Google Scholar 

  27. T. Reya, S.J. Morrison, M.F. Clarke and I.L. Weissman. Stem cells, cancer, and cancer stem cells. Nature, (2001).

    Google Scholar 

  28. K. Shien, S. Toyooka, H. Yamamoto. Acquired resistance to egfr inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res., (2013).

    Google Scholar 

  29. A. Singh and J. Settleman. Emt, cancer stemcells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, (2010).

    Google Scholar 

  30. T. Stiehl and A. Marciniak-Czochra. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Mod. Nat. Phen., (2012).

    Google Scholar 

  31. J.P. Thiery. Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, (2002).

    Google Scholar 

  32. V. Vainstein, O.U. Kirnasovsky and Y.K. Zvia Agur. Strategies for cancer stem cell elimination: Insights from mathematical modelling. J. Theor. Biology, (2012).

    Google Scholar 

  33. D.C. Voon, H. Wang, J.K. Koo. Emt-induced stemness and tumorigenicity are fueled by the egfr/ras pathway. PLoS One, (2013).

    Google Scholar 

  34. X. Zhu, X. Zhou, M.T. Lewis, L. Xia and S. Wong. Cancer stem cell, niche and egfr decide tumor development and treatment response: A bio-computational simulation study. J. Theor. Biol., (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Sfakianakis.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellmann, N., Kolbe, N. & Sfakianakis, N. A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix. Bull Braz Math Soc, New Series 47, 397–412 (2016). https://doi.org/10.1007/s00574-016-0147-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0147-9

Keywords

Mathematical subject classification

Navigation