On limiting for higher order discontinuous Galerkin method for 2D Euler equations

  • Juan Pablo Gallego-Valencia
  • Christian Klingenberg
  • Praveen Chandrashekar


We present an implementation of discontinuous Galerkin method for 2-D Euler equations on Cartesian meshes using tensor product Lagrange polynomials based on Gauss nodes. The scheme is stabilized by a version of the slope limiter which is adapted for tensor product basis functions together with a positivity preserving limiter. We also incorporate and test shock indicators to determine which cells need limiting. Several numerical results are presented to demonstrate that the proposed approach is capable of computing complex discontinuous flows in a stable and accurate fashion.


partial differential equations conservation laws discontinuous Galerkin method limiters compressible Euler equations shock indicator 

Mathematical subject classification



  1. [1]
    B. Cockburn and C.W. Shu. J. Comput. Phys., 141 (1998), 199–224.MathSciNetCrossRefGoogle Scholar
  2. [2]
    J.E. Flaherty, L. Krivodonova, J.-F. Remacle and M.S. Shephard. Finite Element Anal. Design, 38 (2002), 889–908.MathSciNetGoogle Scholar
  3. [3]
    L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon and J.E. Flaherty. Apl. Num. Math., 48 (2004), 323–338.MathSciNetCrossRefGoogle Scholar
  4. [4]
    X. Zhang, and C.W. Shu. J. Comput. Phys., 229 (2010), 8918–8934.MathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Bangerth and R. Hartmann and G. Kanschat. ACM Trans. Math. Softw., 33(4) (2007), 24/1–24/27.MathSciNetCrossRefGoogle Scholar
  6. [6]
    P.R. Woodward and P. Colella. J. Comput. Phys., 54 (1984), 115–173.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J.P. Gallego-Valencia, J. Löbbert, S. Müthing, P. Bastian, C. Klingenberg and Y. Xia. Proc. in App. Math. and Mech., 14 (2014), 953–954.CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2016

Authors and Affiliations

  • Juan Pablo Gallego-Valencia
    • 1
  • Christian Klingenberg
    • 1
  • Praveen Chandrashekar
    • 2
  1. 1.Dept. of MathematicsWürzburg UniversityWürzburgGermany
  2. 2.TIFR Center for Applicable MathematicsBangaloreIndia

Personalised recommendations