Skip to main content
Log in

Large-time behavior for fluid and kinetic plasmas with collisions

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

The motion of collisional plasmas can be governed either by the Euler-Maxwell system with damping at the fluid level or by the Vlasov-Maxwell-Boltzmann system at the kinetic level. In the note, we present some recent results in [8] and [7] for the study of the non-trivial large-time behavior of solutions to the Cauchy problem on the related models in perturbation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Batty and T. Duyckaerts. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ., 8(4) (2008), 765–780.

    Article  MathSciNet  MATH  Google Scholar 

  2. R.E. Caflisch and B. Nicolaenko. Shock profile solutions of the Boltzmann equation. Comm. Math. Phys., 86 (1982), 161–194.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Chapman and T.G. Colwing. The Mathematical Theory of Non-uniformGases. 3rd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, (1990).

    Google Scholar 

  4. F. Chen. Introduction to Plasma Physics and Controlled Fusion. Second edition. Plenum Press, (1984).

    Book  Google Scholar 

  5. R.-J. Duan. Global smooth flows for the compressible Euler-Maxwell system. The relaxation case. J. Hyperbolic Differ. Equ., 8 (2011), 375–413.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.-J. Duan and S.-Q. Liu. Stability of rarefaction waves of the Navier-Stokes- Poisson system. J. Differential Equations, 258(7) (2015), 2495–2530.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.-J. Duan and S.-Q. Liu. Stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system. SIAMJ. Math. Anal., 47(5) (2015), 3585–3647.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.-J. Duan, Q.-Q. Liu and C.-J. Zhu. Darcy’s law and diffusion for a two-fluid Euler-Maxwell system with dissipation. Math. Models Methods Appl. Sci., 25(11) (2015), 2089–2151.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.-J. Duan, Y.-J. Lei, T. Yang and H.-J. Zhao. The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials, preprint (2014), arXiv:1411.5150.

    Google Scholar 

  10. R.-J. Duan, S.-Q. Liu, T. Yang and H.-J. Zhao. Stabilty of the nonrelativisticVlasov- Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 6(1) (2013), 159–204.

    MathSciNet  MATH  Google Scholar 

  11. R.-J. Duan and R.M. Strain. Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space. Comm. Pure. Appl. Math., 24(11) (2011), 1497–1546.

    MathSciNet  MATH  Google Scholar 

  12. R.-J. Duan and X.-F. Yang. Stability of rarefaction wave and boundary layer for outflow problemon the two-fluidNavier-Stokes-Poisson equations.Commun. Pure Appl. Anal., 12(2) (2013), 985–1014.

    Article  MathSciNet  Google Scholar 

  13. P. Germain and N. Masmoudi. Global existence for the Euler-Maxwell system. Ann. Sci. Éc. Norm. Supér. (4), 47(3) (2014), 469–503.

    MathSciNet  MATH  Google Scholar 

  14. R.J. Goldstonand P.H. Rutherford. Introduction toPlasma Physics. Taylor&Francis (1995).

    Book  Google Scholar 

  15. J. Goodman. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal., 95(4) (1986), 325–344.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Guo. The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math., 153(3) (2003), 593–630.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Guo. The Vlasov-Poisson-Landausystem in a periodic box. J. Amer.Math. Soc., 25 (2012), 759–812.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Guo, A.D. Ionescu and B. Pausader. The Euler-Maxwell two-fluid system in 3D. Annals of Mathematics, 183 (2016), 377–498.

    Article  Google Scholar 

  19. Y. Guo and J. Jang. Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Comm. Math. Phys., 299(2) (2010), 469–501.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Hsiao and T.-P. Liu. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Comm. Math. Phys., 143(3) (1992), 599–605.

    Article  MathSciNet  MATH  Google Scholar 

  21. F.-M. Huang, P. Marcati and R.-H. Pan. Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch. Ration. Mech. Anal., 176(1) (2005), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  22. F.-M. Huang and T. Yang. Stability of contact discontinuity for the Boltzmann equation. J. Differential Equations, 229 (2006), 698–742.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Jang. Vlasov-Maxwell-Boltzmann diffusive limit. Arch. Ration. Mech. Anal., 194(2) (2009), 531–584.

    Article  MathSciNet  MATH  Google Scholar 

  24. N.A. Krall and A.W. Trivelpiece. Principles of Plasma Physics, McGraw-Hill, (1973).

    Google Scholar 

  25. K. Ide and S. Kawashima. Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system. Math. Models Methods Appl. Sci., 18(7) (2008), 1001–1025.

    Article  MathSciNet  MATH  Google Scholar 

  26. H.-L. Li, T. Yang and M.Y. Zhong. Spectrumstructure and behaviors of the Vlasov-Maxwell-Boltzmann systems, preprint (2014).

    Google Scholar 

  27. J.-L. Lions. Remarks onDarcy’s law. IMA J. Appl.Math., 46(1-2) (1991), 29–38.

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Liu and B. Rao. Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys., 56(4) (2005), 630–644.

    Article  MathSciNet  MATH  Google Scholar 

  29. T.-P. Liu and Z.-P. Xin. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys., 118 (1988), 451–465.

    Article  MathSciNet  MATH  Google Scholar 

  30. T.-P. Liu, T. Yang and S.-H. Yu. Energy method for the Boltzmann equation. Physica D, 188(3-4) (2004), 178–192.

    Article  MathSciNet  MATH  Google Scholar 

  31. T.-P. Liu, T. Yang, S.-H. Yu and H.-J. Zhao. Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Rational Mech. Anal., 181(2) (2006), 333–371.

    Article  MathSciNet  MATH  Google Scholar 

  32. T.-P. Liu and S.-H. Yu. Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Comm. Math. Phys., 246(1) (2004), 133–179.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Matsumura and K. Nishihara. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 3 (1986), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Matsumura and K. Nishihara. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 2(1) (1985), 17–25.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.E. Muñoz Rivera and R. Racke. Global stability for damped Timoshenko systems. Discrete Contin. Dyn. Syst., 9(6) (2003), 1625–1639.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinet. Relat. Models, 4(2) (2011), 569–588.

    Article  MathSciNet  MATH  Google Scholar 

  37. R.M. Strain. The Vlasov-Maxwell-Boltzmann system in the whole space. Comm. Math. Phys., 268(2) (2006), 543–567.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Ukai. On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proceedings of the Japan Academy, 50 (1974), 179–184.

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Ueda, R.-J. Duan and S. Kawashima. Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application. Arch. Ration. Mech. Anal., 205(1) (2012), 239–266.

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Ueda and S. Kawashima. Decay property of regularity-loss type for the Euler- Maxwell system. Methods Appl. Anal., 18 (2011), 245–268.

    MathSciNet  MATH  Google Scholar 

  41. C. Villani. A review of mathematical topics in collisional kinetic theory. North-Holland, Amsterdam, Handbook of mathematical fluid dynamics, Vol. I, 2002, pp. 71–305.

    MathSciNet  Google Scholar 

  42. S.-H. Yu. Nonlinear wave propagations over a Boltzmann shock profile. J. Amer. Math. Soc., 23(4) (2010), 1041–1118.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Duan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R. Large-time behavior for fluid and kinetic plasmas with collisions. Bull Braz Math Soc, New Series 47, 307–321 (2016). https://doi.org/10.1007/s00574-016-0140-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0140-3

Keywords

Mathematical subject classification

Navigation