Skip to main content
Log in

Abstract

For L(·, π) in a large class of L-functions, assuming the generalized Riemann hypothesis (GRH), we show an explicit bound for the function \({S_1}\left( {t,\pi } \right) = \frac{1}{\pi }\int_{1/2}^\infty {\log \left| {L\left( {\sigma + it,\pi } \right)} \right|} d\sigma \), expressed in terms of its analytic conductor. This enables us to give an alternative proof of the most recent (conditional) bound for \({S_1}\left( {t,\pi } \right) = \frac{1}{\pi }\) arg \(L\left( {\frac{1}{2} + it,\pi } \right)\), which is the derivative of S 1(·, π) at t. Additional applications include bounds for the maximal multiplicity of a zero of an L-function and bounds for the maximum gap between consecutive zeros of an L-function, both under GRH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bober, J.B. Conrey, D. Farmer, A. Fujii, S. Koutsolitas, S. Lemurell, M. Rubinstein and H. Yoshida. The highest lower zero of general L-functions, to appear in Journal of Number Theory.

  2. E. Carneiro and V. Chandee. Bounding (s) in the critical strip. Journal ofNumber Theory, 131 (2011), 363–384.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Carneiro, V. Chandee, F. Littmann and M.B. Milinovich. Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function, to appear in Journal für die reine und angewandte Mathematik. DOI 10.1515/crelle-2014-0078.

  4. E. Carneiro, V. Chandee and M.B. Milinovich. Bounding S(t) and S1(t) on the Riemann hypothesis. Mathematische Annalen, 356(3) (2013), 939–968.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Carneiro, V. Chandee and M.B. Milinovich. A note on the zeros of zeta and L-functions, Mathematische Zeitschrift, 281 (2015), 315–332.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Carneiro and F. Littmann. Bandlimitedapproximationto the truncatedGaussian and applications. Constructive Approximation, 38(1) (2013), 19–57.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Carneiro, F. Littmann and J.D. Vaaler. Gaussian subordinationfor the Beurling- Selberg extremal problem. Transactions of the American Mathematical Society, 365(7) (2013), 3493–3534.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Chandee and K. Soundararajan. Bounding \(\left| {\xi \left( {\frac{1}{2} + it} \right)} \right|\) on the Riemann Hypothesis. Bulletin of the London Mathematical Society, 43 (2011), 243–250.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Fujii. An explicit estimate in the theory of the distribution of the zeros of the Riemann zeta function. Commentarii Mathematici Universitatis Sancti Pauli, 53 (2004), 85–114.

    MathSciNet  MATH  Google Scholar 

  10. A. Fujii. A note on the distribution of the argument of the Riemann zeta function. Commentarii Mathematici Universitatis Sancti Pauli, 55(2) (2006), 135–147.

    MathSciNet  MATH  Google Scholar 

  11. P.X. Gallagher. Pair correlation of zeros of the zeta function. Journal für die reine und angewandte Mathematik, 362 (1985), 72–86.

    MathSciNet  MATH  Google Scholar 

  12. D.A. Goldston and S.M. Gonek. A note on S(t) and the zeros of the Riemann zeta-function. Bulletin of the London Mathematical Society, 39(3) (2007), 482–486.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Iwaniec and E. Kowalski. Analytic Number Theory, American Mathematical Society ColloquiumPublications, 53 (2004).

  14. A.A. Karatsuba and M.A. Korolev. The argument of the Riemann zeta function. Russian Mathematical Surveys, 60(3) (2005), 433–488.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.E. Littlewood. On the zeros of the Riemann zeta-function. Proceedings of the Cambridge Philosophical Society, 22 (1924), 295–318.

    Article  MATH  Google Scholar 

  16. S.D. Miller. The highest-lowest zero and other applications of positivity. Duke Mathematical Journal, 112(1) (2002), 83–116.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Ramachandra and A. Sankaranarayanan. On some theorems of Littlewood and Selberg I. Journal of Number Theory, 44 (1993), 281–291.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Carneiro.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, E., Finder, R. On the argument of L-functions. Bull Braz Math Soc, New Series 46, 601–620 (2015). https://doi.org/10.1007/s00574-015-0105-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-015-0105-y

Keywords

Mathematical subject classification

Navigation