Skip to main content
Log in

Eigenvalue estimates for a class of elliptic differential operators on compact manifolds

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Themotivation of this paper is to study a second order elliptic operatorwhich appears naturally in Riemannian geometry, for instance in the study of hypersurfaces with constant r-mean curvature. We prove a generalizedBochner-type formula for such a kind of operators and as applicationswe obtain some sharp estimates for the first nonzero eigenvalues in two special cases. These results can be considered as generalizations of the Lichnerowicz-Obata Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hilário Alencar, Manfredo do Carmo and Maria Fernanda Elbert. Stability of hypersurfaces with vanishing r-mean curvatures in Euclidean spaces. J. Reine Angew. Math., 554 (2003), 201–216, DOI 10. 1515/crll. 2003. 006. MR1952173 (2003k:53061).

    MATH  MathSciNet  Google Scholar 

  2. Hilário Alencar, Manfredo do Carmo and Walcy Santos. A gap theorem for hypersurfaces of the sphere with constant scalar curvature one. Comment. Math. Helv., 77(3) (2002), 549–562, DOI 10. 1007/s00014-002-8351-1. MR1933789 (2003m:53098).

    Article  MATH  MathSciNet  Google Scholar 

  3. Hilário Alencar, Harold Rosenberg and Walcy Santos. On the Gauss map of hypersurfaces with constant scalar curvature in spheres. Proc. Amer. Math. Soc., 132(12) (2004), 3731–3739 (electronic), DOI 10. 1090/S0002-9939-04-07493-3. MR2084098 (2005h:53099).

    Article  MATH  MathSciNet  Google Scholar 

  4. Hilário Alencar, Walcy Santos and Detang Zhou. Stable hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 138(9) (2010), 3301–3312, DOI 10. 1090/S0002-9939-10-10388-8. MR2653960 (2011m:53095)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alexander Alexandrov. Die innere Geometrie der konvexen Flachen, in Russian. German translation: Akademie, Berlin (1955).

  6. Luis J. Alías and J. Miguel Malacarne. On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms. Illinois J. Math., 48(1) (2004), 219–240. MR2048223 (2005b:53093)

    MATH  MathSciNet  Google Scholar 

  7. João Lucas Marques Barbosa and Antônio Gervásio Colares. Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom., 15(3) (1997), 277–297, DOI 10.1023/A:1006514303828. MR1456513 (98h:53091).

    Article  MATH  MathSciNet  Google Scholar 

  8. Arthur L. Besse. Einstein manifolds, Classics in Mathematics. Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. MR2371700 (2008k:53084).

    Google Scholar 

  9. Qing-Ming Cheng. Compact locally conformally flat Riemannianmanifolds. Bull. London Math. Soc., 33(4) (2001), 459–465, DOI 10.1017/S0024609301008074. MR1832558 (2002g:53045).

    Article  MATH  MathSciNet  Google Scholar 

  10. Xu Cheng. An almost-Schur type lemma for symmetric (2, 0) tensors and applications. Pacific J. Math., 267(2) (2014), 325–340, DOI 10. 2140/pjm.2014.267.325, MR3207587.

    Article  MATH  MathSciNet  Google Scholar 

  11. Shiu Yuen Cheng and Shing Tung Yau. Hypersurfaces with constant scalar curvature. Math. Ann., 225(3) (1977), 195–204. MR0431043 (55 #4045).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. P. do Carmo and F. W. Warner. Rigidity and convexity of hypersurfaces in spheres. J. Differential Geometry, 4 (1970), 133–144. MR0266105 (42 #1014).

    MATH  MathSciNet  Google Scholar 

  13. Maria Fernanda Elbert. Constant positive 2-mean curvature hypersurfaces. Illinois J. Math., 46(1) (2002), 247–267. MR1936088 (2003g:53103).

    MATH  MathSciNet  Google Scholar 

  14. David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR1814364 (2001k:35004).

    Google Scholar 

  15. Jaques Hadamard. Sur certaines proprits des trajectories en dynamique. J. Math. Pures Appl., 3 (1897), 331–387.

    MATH  Google Scholar 

  16. André Lichnerowicz. Géométrie des groupes de transformations. Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958 (French). MR0124009 (23 #A1329).

    Google Scholar 

  17. Sebastián Montiel and Antonio Ros. Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 279–296. MR1173047 (93h:53062).

  18. Morio Obata. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan, 14 (1962), 333–340. MR0142086 (25 #5479).

    Article  MATH  MathSciNet  Google Scholar 

  19. Peter Petersen. Riemannian geometry. 2nd ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006. MR2243772 (2007a:53001).

  20. Robert C. Reilly. Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Geometry, 8 (1973), 465–477. MR0341351 (49 #6102).

    MATH  MathSciNet  Google Scholar 

  21. Harold Rosenberg. Hypersurfaces of constant curvature in space forms. Bull. Sci. Math., 117(2) (1993), 211–239. MR1216008 (94b:53097).

    MATH  MathSciNet  Google Scholar 

  22. R. Schoen, L. Simon and S. T. Yau. Curvature estimates forminimal hypersurfaces. Acta Math., 134(3-4) (1975), 275–288. MR0423263 (54 #11243).

    Article  MATH  MathSciNet  Google Scholar 

  23. Jeff A. Viaclovsky. Conformal geometry, contact geometry, and the calculus of variations. DukeMath. J., 101(2) (2000), 283–316, DOI 10. 1215/S0012-7094-00-10127-5. MR1738176 (2001b:53038).

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Voss. Einige differentialgeometrischeKongruenzsätze für geschlossene Flächen und Hyperflächen. Math. Ann., 131 (1956), 180–218 (German). MR0080327 (18,229f).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilário Alencar.

Additional information

Corresponding author. Partially supported by CNPq and Fapeal of Brazil.

Partially supported by CNPq and Faperj of Brazil.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alencar, H., Neto, G.S. & Zhou, D. Eigenvalue estimates for a class of elliptic differential operators on compact manifolds. Bull Braz Math Soc, New Series 46, 491–514 (2015). https://doi.org/10.1007/s00574-015-0102-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-015-0102-1

Keywords

Mathematical subject classification

Navigation