Skip to main content
Log in

Characterization of strong exponential dichotomies

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We introduce the notion of an exponential dichotomy with respect to a sequence of norms and we characterize it completely in terms of the admissibility of bounded solutions. The latter refers to the existence of (unique) bounded solutions for any bounded perturbation of the original dynamics. We consider the general case of a nonautonomous dynamics defined by a sequence of linear operators. As a nontrivial application, we establish the robustness of nonuniform exponential dichotomies as well as of strong nonuniform exponential dichotomies, which corresponds to the persistence of these notions under sufficiently small linear perturbations. The relevance of the results stems from the ubiquity of this type of exponential behavior in the context of ergodic theory: for almost all trajectories with nonzero Lyapunov exponents of a measure-preserving diffeomorphism, the derivative cocycle admits a nonuniform exponential dichotomy and in fact a strong nonuniform exponential dichotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barreira and Ya. Pesin. Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series 23, Amer. Math. Soc., (2002).

    Google Scholar 

  2. L. Barreira and Ya. Pesin. NonuniformHyperbolicity. Encyclopedia ofMathematics and Its Application 115, Cambridge University Press (2007).

    Google Scholar 

  3. L. Barreira and C. Valls. Robustness of nonuniform exponential dichotomies in Banach spaces. J. Differential Equation., 244 (2008), 2407–2447.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Barreira and C. Valls. Stability of Nonautonomous Differential Equations. Lecture Notes in Mathematics 1926, Springer (2008).

    MATH  Google Scholar 

  5. A. Ben-Artzi and I. Gohberg. Dichotomy of systems and invertibility of linear ordinary differential operators, in Time-Variant Systems and Interpolation, Oper. Theory Adv. Appl. 56, Birkhäuser, (1992), 90–119.

    Chapter  Google Scholar 

  6. A. Ben-Artzi, I. Gohberg and M. Kaashoek. Invertibility and dichotomy of differential operators on a half-line. J. Dynam. Differential Equation., 5 (1993), 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Chicone and Yu. Latushkin. Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs 70, Amer. Math. Soc., (1999).

    Google Scholar 

  8. S.-N. Chow and H. Leiva. Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differential Equation., 120 (1995), 429–477.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Coppel. Dichotomies and reducibility. J. Differential Equations, 3 (1967), 500–521.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Coppel. Dichotomies in Stability Theory. Lect. Notes in Math. 629, Springer (1978).

    Google Scholar 

  11. Ju. Daleckiĭ and M. Kreĭn. Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs 43, Amer. Math. Soc., (1974).

    Google Scholar 

  12. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lect. Notes in Math. 840, Springer (1981).

    Google Scholar 

  13. N. Huy. Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. J. Funct. Anal., 235 (2006), 330–354.

    Article  MATH  MathSciNet  Google Scholar 

  14. Yu. Latushkin, A. Pogan and R. Schnaubelt. Dichotomy and Fredholm properties of evolution equations. J. Operator Theor., 58 (2007), 387–414.

    MATH  MathSciNet  Google Scholar 

  15. B. Levitan and V. Zhikov. Almost Periodic Functions and Differential Equations. Cambridge University Press, (1982).

    MATH  Google Scholar 

  16. J. Massera and J. Schäffer. Linear differential equations and functional analysis. I. Ann. of Math. (2), 67 (1958), 517–573.

    Article  Google Scholar 

  17. J. Massera and J. Schäffer. Linear Differential Equations and Function Spaces. Pure and Applied Mathematics 21, Academic Press, (1966).

    Google Scholar 

  18. N. Minh and N. Huy. Characterizations of dichotomies of evolution equations on the half-line. J. Math. Anal. Appl., 261 (2001), 28–44.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Naulin and M. Pinto. Admissible perturbations of exponential dichotomy roughness. Nonlinear Anal., 31 (1998), 559–571.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. Oseledets. A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19 (1968), 197–221.

    MATH  Google Scholar 

  21. K. Palmer. Exponential dichotomies and Fredholm operators. Proc. Amer. Math. Soc., 104 (1988), 149–156.

    Article  MATH  MathSciNet  Google Scholar 

  22. O. Perron. Die Stabilitätsfrage bei Differentialgleichungen. Math. Z., 32 (1930), 703–728.

    Article  MATH  MathSciNet  Google Scholar 

  23. Ya. Pesin. Families of invariantmanifolds corresponding to nonzero characteristic exponents. Math. USSR-Izv., 10 (1976), 1261–1305.

    Article  Google Scholar 

  24. V. Pliss and G. Sell. Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dynam. Differential Equation., 11 (1999), 471–513.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Popescu. Exponential dichotomy roughness on Banach spaces. J. Math. Anal. Appl., 314 (2006), 436–454.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Preda, A. Pogan and C. Preda. (L p, L q)-admissibility and exponential dichotomy of evolutionary processes on the half-line. Integral Equations Operator Theor., 49 (2004), 405–418.

    Article  MATH  MathSciNet  Google Scholar 

  27. N. Van Minh, F. Räbiger and R. Schnaubelt. Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line. Integral Equations Operator Theor., 32 (1998), 332–353.

    Article  MATH  Google Scholar 

  28. W. Zhang. The Fredholm alternative and exponential dichotomies for parabolic equations. J. Math. Anal. Appl., 191 (1985), 180–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Additional information

L.B. and C.V. were supported by Portuguese funds through FCT: project PEst-OE/EEI/LA0009/2013 (CAMGSD).

D.D. was partly supported by University of Rijeka research grant 13.14.1.2.02.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreira, L., Dragičević, D. & Valls, C. Characterization of strong exponential dichotomies. Bull Braz Math Soc, New Series 46, 81–103 (2015). https://doi.org/10.1007/s00574-015-0085-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-015-0085-y

Keywords

Mathematical subject classification

Navigation