Skip to main content
Log in

Abstract

The notion of DB index, a measure of how far a singularity of a pair is frombeingDu Bois, is introduced and used to generalize vanishing theorems of [Ste85], [GKKP11], and [Kov11] with simpler and more natural proofs than the originals. An argument used in one of these proofs also yields an additional theorem connecting various push forwards that lie outside of the range of the validity of the above vanishing theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Carlson. Polyhedral resolutions of algebraic varieties. Trans. Amer. Math. Soc., 292(2) (1985), 595–612. MR808740 (87i:14008)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Druel. The Zariski-Lipman conjecture for log canonical spaces. Bull. Lond. Math. Soc., 46(4) (2014), 827–835.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Du Bois. Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. France, 109(1) (1981), 41–81. MR613848 (82j:14006)

    MathSciNet  MATH  Google Scholar 

  4. P. Graf and S. J. Kovács. An optimal extension theorem for 1-forms and the Lipman-Zariski Conjecture, Documenta Math., 19 (2014), 815–830.

    MATH  Google Scholar 

  5. D. Greb, S. Kebekus, S.J. Kovács and T. Peternell. Differential forms on log canonical spaces. Publ. Math. Inst. Hautes Études Sci. (2011), no. 114, 87–169. 2854859

    Article  MATH  Google Scholar 

  6. F. Guillén, V. Navarro Aznar, P. Pascual Gainza and F. Puerta. Hyperrésolutions cubiques et descente cohomologique. Lecture Notes in Mathematics, vol. 1335, Springer-Verlag, Berlin, 1988, Papers from the Seminar on Hodge-Deligne Theory held in Barcelona, 1982. MR972983 (90a:14024)

    Google Scholar 

  7. J. Kollár. Shafarevich maps and automorphic forms. M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1995. MR1341589 (96i:14016)

    MATH  Google Scholar 

  8. J. Kollár. Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013, with the collaboration of Sándor J Kovács.

    Google Scholar 

  9. J. Kollár and S.J. Kovács. Log canonical singularities are Du Bois. J. Amer. Math. Soc., 23(3) (2010), 791–813. 2629988 (2011m:14061)

    Article  MathSciNet  MATH  Google Scholar 

  10. S.J. Kovács. Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink. CompositioMath., 118(2) (1999), 123–133. MR1713307 (2001g:14022)

    MATH  Google Scholar 

  11. S.J. Kovács. Rational, log canonical, Du Bois singularities. II. Kodaira vanishing and small deformations. Compositio Math., 121(3) (2000), 297–304. MR1761628 (2001m:14028)

    Article  MathSciNet  MATH  Google Scholar 

  12. S.J. Kovács. Du Bois pairs and vanishing theorems. Kyoto J. Math., 51(1) (2011), 47–69. 2784747 (2012d:14028)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.J. Kovács and K.E. Schwede. Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of stratified spaces. Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 58 (2011), 51–94. 2796408 (2012k:14003)

    Google Scholar 

  14. S.J. Kovács, K.E. Schwede and K.E. Smith. The canonical sheaf of Du Bois singularities. Adv. Math., 224(4) (2010), 1618–1640. 2646306 (2011m:14062)

    Article  MathSciNet  MATH  Google Scholar 

  15. C.A.M. Peters and J.H.M. Steenbrink. Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer-Verlag, Berlin, 2008. MR2393625

    Google Scholar 

  16. K. Schwede. A simple characterization of Du Bois singularities. Compos. Math. 143(4) (2007), 813–828. MR2339829 (2008k:14034)

    MathSciNet  MATH  Google Scholar 

  17. J.H.M. Steenbrink. Mixed Hodge structures associated with isolated singularities. Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513–536. MR713277 (85d:32044)

    Google Scholar 

  18. J.H.M. Steenbrink. Vanishing theorems on singular spaces. Astérisque (1985), no. 130, 330–341, Differential systems and singularities (Luminy, 1983).MR804061 (87j:14026)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor J. Kovács.

Additional information

Dedicated to Steven Kleiman on the occasion of his 70th birthday.

Supported in part by NSF Grants DMS-0856185, DMS-1301888, and the Craig McKibben and SarahMerner Endowed Professorship in Mathematics at the University ofWashington.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, S.J. Steenbrink vanishing extended. Bull Braz Math Soc, New Series 45, 753–765 (2014). https://doi.org/10.1007/s00574-014-0073-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-014-0073-7

Keywords

Mathematical subject classification

Navigation