Skip to main content
Log in

Properly discontinuous actions on Hilbert manifolds

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this article we study properly discontinuous actions on Hilbert manifolds giving new examples of complete Hilbert manifolds with nonnegative, respectively nonpositive, sectional curvature with infinite fundamental group. We also get examples of complete infinite dimensional Kähler manifolds with positive holomorphic sectional curvature and infinite fundamental group in contrastwith the finite dimensional case and we classify abelian groups acting linearly, isometrically and properly discontinuously on Stiefel manifolds. Finally, we classify homogeneous Hilbert manifolds with constant sectional curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Atkin. The Hopf-Rinow theorem is false in infinite dimensions. Bull. London Math. Soc., 7 (1975), 261–266.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Battaglia. A hypercomplex Stiefel manifold. Differential Geom. Appl., 6(2) (1996), 121–128.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Biliotti, F. Mercuri and D. Tausk. A note on tensor fields in Hilbert spaces. An. Acad. Brasil. Ciênc., 74(2) (2002), 207–210.

    MathSciNet  MATH  Google Scholar 

  4. L. Biliotti. Properly Discontinuous isometric actions on the unith sphere of infinite dimensional Hilbert spaces. Ann. Global Anal. Geom., 26 (2004), 385–395.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Biliotti. Exponential map of a weak Riemannian Hilbert manifold. Illinois J. Math., 48 (2004), 1191–1206.

    MathSciNet  MATH  Google Scholar 

  6. L. Biliotti, R. Exel, P. Piccione and D. Tausk. On the singularities of the exponentialmap in infinite dimensionalRiemannianmanifolds. Math. Ann., 336(2) (2006), 247–267.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Burghelea and N. Kuiper. Hilbertmanifolds. Ann. of Math., 90 (1968), 379–417.

    Article  MathSciNet  Google Scholar 

  8. J. Cheeger and D. Ebin. Comparison theorems in Riemannian geometry. North-Holland Publishing Co., Amsterdam (1975).

    MATH  Google Scholar 

  9. I.G. Dotti De Miatello. Extension of actions on Stiefel manifolds. Pacific J. Math., 84(1) (1979), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Eells. A setting for global analysis. Bull.Amer.Math. Soc., 72 (1966), 751–807.

    Article  MathSciNet  Google Scholar 

  11. I. Ekeland. The Hopf-Rinow Theorem in infinite dimension. J. Diff. Geometry, 13 (1978), 287–301.

    MathSciNet  MATH  Google Scholar 

  12. A. Edelman, T.A. Arias and S. Smith. The geometry of algorithms with orthogonality constraints. Siam. J. Matrix Anal. Appl., 20(2) (1998), 303–353.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Grossman. Hilbert manifolds without epiconjugate points. Proc. of Amer. Math. Soc., 16 (1965), 1365–1371.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Harms and A. Mennucci. Geodesics in infinite dimensional Stiefel and Grassmannian manifolds. C.R. Acad. Sci. Paris, 350 (2013), 773–776.

    Article  MathSciNet  Google Scholar 

  15. A. Huckleberry. Introduction to group actions in symplectic and complex geometry. In Infinite dimensional Kähler manifolds (Oberwolfach, 1995), volume 31 of DMV Sem., pages 1–129. Birkhäuser, Basel (2001).

    Chapter  Google Scholar 

  16. W. Klingenberg. Riemannian geometry. De Gruyter studies in Mathemathics, New York (1982).

    MATH  Google Scholar 

  17. S. Kobayashi and K. Nomizu. Foundations of DifferentialGeometry. vol I, Wiley-Interscience (1963).

  18. S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. vol II, Wiley-Interscience (1963).

  19. I.M. James. The topology of Stiefel manifolds. London Mathematical Society Lecture Note Series 24, Cambridge University Press, Cambridge — New York — Melbourne, (1976), viii+168 pp.

  20. S. Lang. Fundamentals of DifferentialGeometry. Third Edition, Graduate Texts in Mathematics, 191, Springer-Verlang, New York (1999).

  21. G. Misiolek. Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms. Indiana Univ. Math. J., 42 (1993), 215–235.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Misiolek. Conjugate points in D µ(T 2). Proc. Amer. Math. Soc., 124 (1996), 977–982.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Misiolek. The exponential map on the free loop space is Fredholm. Geom. Funct. Anal., 7 (1997), 1–17.

    Article  MathSciNet  Google Scholar 

  24. G. Misiolek. Exponential maps of Sobolev metrics on loop groups. Proc. Amer. Math. Soc., 127 (1999), 2475–2482.

    Article  MathSciNet  MATH  Google Scholar 

  25. Y.A. Neretin. On Jordan angles and the Triangle Inequality in Grassmann Manifolds. Geom. Dedicata, 86(1–3) (2001), 81–92.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Rudin. Functional Analysis. Second Ediction, International Series in Pure and AppliedMathematics. McGraw-Hill, Inc., New York (1991).

    MATH  Google Scholar 

  27. Y. Tsukamoto. On Kählerian manifolds with positive holomorphic sectional curvature. Proc. Japan Acad., 33 (1957), 333–335.

    Article  MathSciNet  MATH  Google Scholar 

  28. A.J. Wolf. Sur la classification des variétés riemannienes homogénes á courbure constante. Comptes rendus a l’Academie des Sciences á Paris, 250 (1960), 3443–3445.

    MATH  Google Scholar 

  29. A.J. Wolf. Spaces of constant curvature. Sixth edition, AMS Chelsea Publishing, Providence, RI, 2001.

    Google Scholar 

  30. Y.-C. Wong. Sectional curvatures of Grassmann manifolds. Proc. Natl. Acad. Sci. USA, 60 (1968), 75–79.

    Article  MATH  Google Scholar 

  31. L. Younes, P. Michor, J. Shah and D. Mumford. A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 19(1) (2008), 25–57.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Biliotti.

Additional information

The authors were partially supported by FIRB 2012 “Geometria differenziale e teoria geometrica delle functioni” grant RBFR12W1AQ003. The second author was partially supported by Fapesp and CNPq (Brazil).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biliotti, L., Mercuri, F. Properly discontinuous actions on Hilbert manifolds. Bull Braz Math Soc, New Series 45, 433–452 (2014). https://doi.org/10.1007/s00574-014-0057-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-014-0057-7

Keywords

Mathematical subject classification

Navigation