Skip to main content
Log in

Existence and geometric structure of metrics on surfaces which extremize eigenvalues

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

This is an exposition of the research area around our lecture at the 60th anniversary conference of IMPA which was held in October of 2012. It is a survey of results which have been obtained over many years concerning sharp upper bounds on the first eigenvalue of a surface, either with or without boundary, in terms or area or boundary length and the surface topology. It is mostly expository, but contains a new coarse upper bound for non-orientable surfaces with boundary. It also contains a classical reformulation of recent results in [10].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Besson. Sur la multiplicité de la première valeur propre des surfaces riemanniennes. Ann. Inst. Fourier (Grenoble), 30(1) (1980), x, 109–128.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Brooks and E. Makover. Riemann surfaces with large first eigenvalue. J. Anal. Math., 83 (2001), 243–258.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Buser, M. Burger and J. Dodziuk. Riemann surfaces of large genus and large λ 1. Geometry and analysis on manifolds (Katata/Kyoto, 1987), 54–63, Lecture Notes in Math., 1339, Springer, Berlin (1988).

    Chapter  Google Scholar 

  4. S.Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helv., 51(1) (1976), 43–55.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Da Lio and T. Riviére. Three-term commutator estimates and the regularity of \(\tfrac{1} {2}\) -harmonic maps into spheres. Anal. PDE, 4 (2011), 149–190.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. El Soufi, H. Giacomini and M. Jazar. A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J., 135 (2006), 181–202.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. El Soufi and S. Ilias. Immersionsminimales, première valeur propre du laplacien et volume conforme. Math. Ann., 275(2) (1986), 257–267.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. El Soufi and S. Ilias. Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math., 195(1) (2000), 91–99.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Fraser and R. Schoen. The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math., 226(5) (2011), 4011–4030.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Fraser and R. Schoen. Sharp eigenvalue bounds and minimal surfaces in the ball, arXiv:1209.3789 [math.DG] (2012).

    Google Scholar 

  11. A. Girouard. Fundamental tone, concentration of density, and conformal degeneration on surfaces. Canad. J. Math., 61 (2009), 548–565.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Girouard and I. Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci., 19 (2012), 77–85.

    MATH  MathSciNet  Google Scholar 

  13. J. Hersch. Quatre propriétés isopérimétriqes de membranes sphériques homogènes. C.R. Acad. Sci. Paris Sér. A-B, 270 (1970), A1645–A1648.

    MathSciNet  Google Scholar 

  14. D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigram and I. Polterovich. How large can the first eigenvalue be on a surface of genus two? IMRN, 63 (2005), 3967–3985.

    Article  Google Scholar 

  15. D. Jakobson, N. Nadirashvili and I. Polterovich. Extremal metric for the first eigenvalue on a Klein bottle. Cand. J. Math., 58 (2006), 381–400.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Jammes. Prescription du spectre de Steklov dans une classe conforme, arXiv:1209.4571 [math.DG] (2012).

    Google Scholar 

  17. M. Karpukhin, G. Kokarev and I. Polterovich. Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces, arXiv:1209.4869v2 [math.DG] (2013).

    Google Scholar 

  18. G. Kokarev. Variational aspects of Laplace eigenvalues on Riemannian surfaces, arXiv:1103.2448 [math.SP] (2011).

    Google Scholar 

  19. G. Kokarev and N. Nadirashvili. On first Neumann eigenvalue bounds for conformal metrics. Around the research of Vladimir Maz’ya. II, 229–238, Int. Math. Ser. (N. Y.), 12, Springer, New York (2010).

    Chapter  Google Scholar 

  20. N. Korevaar. Upper bounds for eigenvalues of conformal surfaces. J. Diff. Geom., 37 (1993), 73–93.

    MATH  MathSciNet  Google Scholar 

  21. P. Li and S.-T. Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math., 69(2) (1982), 269–291.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Montiel and A. Ros. Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math., 83(1) (1985), 153–166.

    Article  MathSciNet  Google Scholar 

  23. N. Nadirashvili. Multiple eigenvalues of the Laplace operator, (Russian) Mat. Sb. (N.S.), 133(175) (1987), 223–237; translation in Math. USSR-Sb., 61 (1988), 225–238.

    Google Scholar 

  24. N. Nadirashvili. Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal., 6(5) (1996), 877–897.

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Nadirashvili and Y. Sire. Conformal spectrum and harmonic maps, arXiv:1007.3104v3 [math.DG], (2011).

    Google Scholar 

  26. J.C.C. Nitsche. Stationary partitioning of convex bodies. Arch. Rational Mech. Anal., 89(1) (1985), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  27. M-F. Vignéras. Quelques remarques sur la conjecture \(\lambda _1 \geqslant \tfrac{1} {4}\). Seminar on Number Theory, Paris 1981–82, Progr. Math., vol. 38, Birkhauser, Boston, MA, (1983), 321–343.

    Google Scholar 

  28. R. Weinstock. Inequalities for a classical eigenvalue problem. J. Rational Mech. Anal., 3 (1954), 745–753.

    MATH  MathSciNet  Google Scholar 

  29. P. Yang and S.-T. Yau. Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7(1) (1980), 55–63.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Schoen.

Additional information

The author was partially supported by NSF grant DMS-1105323.

About this article

Cite this article

Schoen, R. Existence and geometric structure of metrics on surfaces which extremize eigenvalues. Bull Braz Math Soc, New Series 44, 777–807 (2013). https://doi.org/10.1007/s00574-013-0034-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-013-0034-6

Keywords

Mathematical subject classification

Navigation