Skip to main content
Log in

Lie groupoids and the Frölicher-Nijenhuis bracket

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

This paper is dedicated to IMPA’s 60th anniversary.

Abstract

The space of vector-valued forms on any manifold is a graded Lie algebra with respect to the Frölicher-Nijenhuis bracket. In this paper we consider multiplicative vector-valued forms on Lie groupoids and show that they naturally form a graded Lie subalgebra. Along the way, we discuss various examples and different characterizations of multiplicative vector-valued forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Arias Abad and M. Crainic. The Weil algebra and the Van Est isomorphism. Ann. Inst. Fourier (Grenoble), 61 (2011), 927–970.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Bott, H. Shulman and J. Stasheff. On the de Rham theory of certain classifying spaces. Advances in Math., 20 (1976), 43–56.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Bursztyn and A. Cabrera. Multiplicative forms at the infinitesimal level. Math. Ann., 353 (2012), 663–705.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Bursztyn, A. Cabrera and M. del Hoyo. Integration of VB-algebroids, in preparation.

  5. H. Bursztyn and M. Crainic. Dirac geometry, quasi-Poisson actions and D/Gvalued moment maps. J. Differential Geometry, 82 (2009), 501–566.

    MATH  MathSciNet  Google Scholar 

  6. H. Bursztyn, M. Crainic, A. Weinstein and C. Zhu. Integration of twisted Dirac brackets. Duke Math. J., 123 (2004), 549–607.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Bursztyn, T. Drummond and N. Kieserman. Multiplicative tensors, in preparation.

  8. A. Cannas da Silva and A. Weinstein. Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes, 10. American Mathematical Society, Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA (1999).

    MATH  Google Scholar 

  9. A. Coste, P. Dazord and A. Weinstein. Groupoïdes symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2,i–ii, 1–62, Publ. Dép. Math. Nouvelle Sér. A, 87-2, Univ. Claude-Bernard, Lyon (1987).

    MathSciNet  Google Scholar 

  10. M. Crainic, M.A. Salazar and I. Struchiner. Multiplicative forms and Spencer operators, ArXiv:1210.2277.

  11. A. Frölicher and A. Nijenhuis. Theory of vector valued differential forms. Part I. Indag. Math., 18 (1956), 338–359.

    Google Scholar 

  12. E. Hawkins. A groupoid approach to quantization. J. SymplecticGeom., 6 (2008), 61–125.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Hepworth. Vector fields and flows on differentiable stacks. Theory and Applications of Categories, 22(21) (2009), 542–587.

    MATH  MathSciNet  Google Scholar 

  14. D. Iglesias Ponte, C. Laurent-Gangoux and P. Xu. Universal lifting theorem and quasi-Poisson groupoids. J. European Math. Soc., 14 (2012), 681–731.

    Article  MATH  Google Scholar 

  15. M. Jotz. The leafspace of a multiplicative foliation. J. Geom. Mech., 3 (2012), 313–332.

    Article  MathSciNet  Google Scholar 

  16. M. Jotz and C. Ortiz. Foliated groupoids and their infinitesimal data, ArXiv:1109.4515.

  17. I. Kolár, P. Michor and J. Slovák. Natural operations in differential geometry. Springer-Verlag, Berlin Heidelberg (1993).

    Book  MATH  Google Scholar 

  18. C. Laurent-Gengoux, M. Stiénon and P. Xu. Integration of holomorphic Lie algebroids. Math. Ann., 345 (2009), 895–923.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Li-Bland and E. Meinrenken. Dirac Lie groups, ArXiv:1110.1525.

  20. J.-H. Lu and A. Weinstein. Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom., 31 (1990), 501–526.

    MATH  MathSciNet  Google Scholar 

  21. K. Mackenzie. General theory of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series, 213. Cambridge University Press, Cambridge (2005).

    Book  MATH  Google Scholar 

  22. K. Mackenzie and P. Xu. Lie bialgebroids and Poisson groupoids. Duke Math. J., 73 (1994), 415–452.

    Article  MATH  MathSciNet  Google Scholar 

  23. I. Moerdijk. Orbifolds as groupoids: an introduction. Contemp. Math., 310 (2002), 205–222.

    Article  MathSciNet  Google Scholar 

  24. I. Moerdjik and J. Mcrun. Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics 91, Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  25. A. Weinstein. Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101–104.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Bursztyn.

About this article

Cite this article

Bursztyn, H., Drummond, T. Lie groupoids and the Frölicher-Nijenhuis bracket. Bull Braz Math Soc, New Series 44, 709–730 (2013). https://doi.org/10.1007/s00574-013-0031-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-013-0031-9

Keywords

Mathematical subject classification

Navigation