Skip to main content
Log in

The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

For k ≥ 2, the k-generalized Fibonacci sequence (F (k) n ) n is defined by the initial values 0, 0, …, 0,1 (k terms) and such that each term afterwards is the sum of the k preceding terms. In 2005, Noe and Post conjectured that the only solutions of Diophantine equation F (k) m = F (ℓ) n , with ℓ > k > 1, n > ℓ + 1, m > k + 1 are

$(m,n,\ell ,k) = (7,6,3,2)and(12,11,7,3)$

. In this paper, we confirm this conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Alekseyev. On the intersections of Fibonacci, Pell, and Lucas numbers. Integers 11A (2011).

    Google Scholar 

  2. J. Bravo and F. Luca. Powers of two in generalized Fibonacci sequences. Rev. ColombianaMat., 46 (2012), 67–79.

    MathSciNet  Google Scholar 

  3. J.J. Bravo and F. Luca. On a conjecture about repdigits in k-generalized Fibonacci sequences. Publ. Math. Debrecen, 82(3–4) (2013).

    Google Scholar 

  4. Y. Bugeaud, M. Mignotte and S. Siksek. Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers. Ann. of Math., 163(3) (2006), 969–1018.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Dujella and A. Pethö. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2), 49 (1998), 291–306.

    MathSciNet  MATH  Google Scholar 

  6. G.P. Dresden. A simplified Binet formula for k-generalized Fibonacci numbers. Preprint, arXiv:0905.0304v2 (2011). Accessed 31 December 2011.

    Google Scholar 

  7. D.E. Ferguson. An expression for generalized Fibonacci numbers. Fibonacci Quart., 4 (1966), 270–273.

    MathSciNet  MATH  Google Scholar 

  8. I. Flores. Direct calculation of k-generalized Fibonacci numbers. Fibonacci Quart., 5 (1967), 259–266.

    MathSciNet  MATH  Google Scholar 

  9. H. Gabai. Generalized Fibonacci k-sequences. Fibonacci Quart., 8 (1970), 31–38.

    MathSciNet  MATH  Google Scholar 

  10. D. Kalman. Generalized Fibonacci numbers by matrix methods. Fibonacci Quart., 20 (1982), 73–76.

    MathSciNet  MATH  Google Scholar 

  11. P.Y. Lin. De Moivre-type identities for the Tribonacci numbers. Fibonacci Quart., 26 (1988), 131–134.

    MathSciNet  MATH  Google Scholar 

  12. F. Luca. Fibonacci and Lucas numbers with only one distinct digit. Port. Math., 57(2) (2000), 243–254.

    MATH  Google Scholar 

  13. D. Marques and A. Togbé. On terms of a linear recurrence sequence with only one distinct block of digits. Colloq. Math., 124 (2011), 145–155.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Marques.On the intersection of two distinct k-generalized Fibonacci sequences. Math. Bohem., 137 (2012), 403–413.

    Google Scholar 

  15. D. Marques. On k-generalized Fibonacci numbers with only one distinct digit. To appear in Util. Math.

  16. E.M. Matveev. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. Izv. Math., 64(6) (2000), 1217–1269.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Mignotte. Intersection des images de certaines suites récurrentes linéaires. Theor. Comput. Sci., 7(1) (1978), 117–121.

    Article  MathSciNet  MATH  Google Scholar 

  18. T.D. Noe and J.V. Post. Primes in Fibonacci n-step and Lucas n-step sequences. J. Integer Seq., 8 (2005), Article 05.4.4.

  19. T.D. Noe. Personal communication, 27 January 2012.

  20. H.P. Schlickewei and W.M. Schmidt. Linear equations in members of recurrence sequences. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20(2) (1993), 219–246.

    MathSciNet  MATH  Google Scholar 

  21. H.P. Schlickewei and W.M. Schmidt. The intersection of recurrence sequences. Acta Arith., 72 (1995), 1–44.

    MathSciNet  MATH  Google Scholar 

  22. W.R. Spickerman. Binet’s formula for the Tribonacci sequence. Fibonacci Quart., 20 (1982), 118–120.

    MathSciNet  MATH  Google Scholar 

  23. S.K. Stein. The intersection of Fibonacci sequences. MichiganMath. J., 9 (1962), 399–402.

    MATH  Google Scholar 

  24. A. Wolfram. Solving generalized Fibonacci recurrences. Fibonacci Quart., 36 (1998), 129–145.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Marques.

Additional information

Supported by FAP-DF, FEMAT and CNPq-Brazil.

About this article

Cite this article

Marques, D. The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences. Bull Braz Math Soc, New Series 44, 455–468 (2013). https://doi.org/10.1007/s00574-013-0021-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-013-0021-y

Keywords

Mathematical subject classification

Navigation