Skip to main content
Log in

Construction et classification de certaines solutions algébriques des systèmes de Garnier

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Résumé

Les déformations isomonodromiques d’équations fuchsiennes d’ordre 2 sur la sphère de Riemann sont paramétrées par les solutions des systèmes de Garnier. Le but de cet article est de construire des solutions algébriques exotiques, i.e. correspondant à des déformations d’équation fuchsienne à monodromie Zariski dense. Précisément, nous classifions toutes les solutions algébriques (complètes) exotiques construites par la méthode de pull-back de Doran-Kitaev: elles se déduisent des déformations isomonodromiques données en tirant en arrière une équation fuchsienne donnée E par une famille de revêtements ramifiés ϕ t . Nous introduisons tout d’abord les structures orbifoldes associées et sous-jacentes à une équation fuchsienne. Ceci nous permet d’avoir une version raffinée de la formule de Riemann Hurwitz qui nous permet rapidement de montrer que E doit être hypergéométrique. Ensuite, on arrive à borner le degré de ϕ et les exposants, puis enfin à lister tous les cas possibles. Ceci généralise un résultat d’ à C. Doran dans le cas de l’équation de Painlevé VI. Nous construisons explicitement une de ces solutions.

Abstract

IsomonodromicdeformationsofFuchsianequationsoforder2onRiemann sphere are parameterized by the solutions of Garnier system. The purpose of this paper is to construct algebraic solutions exotic, i.e. corresponding to deformations of Fuchsian equation with Zariski dense monodromy. Specifically, we classify all the algebraic solutions (complete) exotic constructed by the method of pull-back of Doran-Kitaev: they are deduced from the data isomonodromic deformations pulling back a Fuchsian equation E given by a family of branched coverings ϕ t . We first introduce the structures and associated orbifoldes underlying Fuchsian equation. This allows us to have are fined version of the Riemann Hurwitz formula that allows us quickly to show that E must be hypergeometric. Then we come to limit the degree of ϕ and exponents, and finally to Painlevé VI. We explicitly construct one of these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. F.V. Andreev and A.V. Kitaev. Transformations RS 24 (3) of the Ranks ≤ 4 and Algebraic Solutions of the Sixth Painlevé Equation. Comm. Math. Phys., 228 (2002), 151–176.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.M. Couveignes. Calcul et rationalité de fonctions de Belyi. Annales de l’Institut Fourier, tome 44 (1) (1994), 1–38.

    Google Scholar 

  3. G.V. Belyi. Galois extensions of a maximal cyclotomic field. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 43(2) (1979), 267–276, English translation in: Math. USSR Izv., 14 (1980), 247–256.

    MathSciNet  MATH  Google Scholar 

  4. P. Boalch. From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3), 90 (2005), 167–208.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Boalch. The fifty-two icosahedral solutions to Painlevé VI. J. Reine Angew. Math., 596 (2006), 183–214.

    MathSciNet  MATH  Google Scholar 

  6. P. Boalch. Some explicit solutions to the Riemann-Hilbert problem. IRMA Lectures in Mathematics and Theoretical Physics, 9 (2006) 85–112.

    MathSciNet  Google Scholar 

  7. P. Boalch. Towards a non-linear Schwarz’s list. The many facets of geometry, 210–236, Oxford Univ. Press, Oxford (2010).

    Book  Google Scholar 

  8. G. Cousin. Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI, arxiv: math/1201.2755v2, (2012).

    Google Scholar 

  9. C.F. Doran. Algebraic and Geometric Isomonodromic Deformations. J. Differential Geometry, 59 (2001), 33–85.

    MathSciNet  MATH  Google Scholar 

  10. B. Dubrovin. Geometry of 2D topological field theories. Integrable systems and quantum groups (Montecatini Terme, 1993), 120–348, Lecture Notes in Math., 1620, Springer, Berlin (1996).

    Chapter  Google Scholar 

  11. B. Dubrovin and M. Mazzocco. Monodromy of certain Painlevé VI Transcendents and Reflection Groups. Ivent. Math., 141 (2000), 55–147.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Dubrovin and M. Mazzocco. Canonical structure and symmetries of the Schlesinger equations. Comm. Math. Phys., 271(2) (2007), 289–373.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Garnier. Sur des systèmes différentiels du second ordre dont l’intégrale générale est uniforme. Ann. Sci. école Norm. Sup., 3e série, tome 77(2) (1960), 123–144.

    MathSciNet  MATH  Google Scholar 

  14. N.J. Hitchin. Poncelet Polygons and the Painlevé Equations. Geometry and analysis (Bombay, 1992), Tata Inst. Fund. Res., Bombay, (1995), 151–185.

    Google Scholar 

  15. N.J. Hitchin. Twistor spaces, Einstein metrics and isomonodromic deformations. J. Differential Geom., 42(1) (1995), 30–112.

    MathSciNet  MATH  Google Scholar 

  16. J. Hodgkinson. A detail in Conformal Representation. Proc. London Math. Soc., Ser. 2, 15 (1916), 166–181.

    MATH  Google Scholar 

  17. K. Iwasaki, H. Kimura, S. Shimomura and S. Yoshida. From Gauss to Painlevé: A Modern Theory of Special Functions. Braunschweig: Vieweg, (1991), 347 pages.

    Book  MATH  Google Scholar 

  18. M. Jimbo and T. Miwa. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II. Physica, 2D (1981), 407–448.

    MathSciNet  Google Scholar 

  19. A.V. Kitaev. Grothendieck’s Dessin d’Enfants, Their Deformations and Algebraic Solutions of the Sixth Painlevé and Gauss Hypergeometric Equations. Algebra i Analiz, 17(1) (2005), 224–273.

    MathSciNet  Google Scholar 

  20. A.V. Kitaev. Remarks Towards the Classification of RS 24 (3)-Transformations and Algebraic Solutions of the Sixth Painlevé Equation. Sémin. Congr., 14, Soc.Math. France, Paris, (2006), 199–227.

    Google Scholar 

  21. F. Klein. Vorlesungen über das Ikosaedar. B.G. Teubner, Leipzig (1884).

    Google Scholar 

  22. O. Lisovyy and Y. Tykhyy. Algebraic Solutions of the sixth Painlevé Equation. Preprint http://arxiv.org/abs/0809.4873v2 (2008).

    Google Scholar 

  23. H.P. de Saint-Gervais. Uniformisation des surfaces de Riemann. Retour sur un théorème centenaire. ENS éditions école normale supérieure de Lyon (2011), 544 pages.

    Google Scholar 

  24. R. Vidũnas and A.V. Kitaev. Computation of highly ramified coverings. Math. Comp., 78(268) (2009), 2371–2395.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Watanabe. Birational canonical transformations and classical solutions of the sixth Painlevé equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1999), 379–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karamoko Diarra.

About this article

Cite this article

Diarra, K. Construction et classification de certaines solutions algébriques des systèmes de Garnier. Bull Braz Math Soc, New Series 44, 129–154 (2013). https://doi.org/10.1007/s00574-013-0006-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-013-0006-x

Mots-clés

Keywords

Mathematical subject classification

Navigation