Skip to main content
Log in

Abstract

In this paper we study minimal surfaces in M × ℝ, where M is a complete surface. Our main result is a Jenkins-Serrin type theorem which establishes necessary and sufficient conditions for the existence of certain minimal vertical graphs in M × ℝ. We also prove that there exists a unique solution of the Plateau’s problem in M × ℝ whoseboundaryisaNitschegraphandweconstructaScherk-typesurfaceinthisspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Alías, M. Dajczer and H. Rosenberg. The Dirichlet problem for CMC surfaces in Heisenberg space, preprint.

  2. T.H. Colding and W.P. Miniciozzi. Minimal Surfaces. Courant Lectures in Mathematicas, 4, New York University (1999).

  3. R. Finn. New Estimates for Equations of Minimal Surface Type. Arch. Rational Mech. Anal., 14 (1963), 337–375.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Jost. Conformal mapping and the Plateau-Douglas problem in Riemannian manifolds. J. Reine Angew. Math., 359 (1985), 37–54.

    MATH  MathSciNet  Google Scholar 

  5. H. Jenkins and J. Serrin. Variational Problems of Minimal Surfaces Type II. Boundary Value Problems for the Minimal Surface Equation. Arch. Rational Mech. Anal., 21 (1966), 321–342.

    Article  MATH  MathSciNet  Google Scholar 

  6. C.B. Morrey. The Problem of Plateau on a Riemannian Manifold. Annals of Mathematics, 49 (1948), 807–851.

    Article  MathSciNet  Google Scholar 

  7. W.H. Meeks III and S.T. Yau. The Classical Plateau Problem and the Topology of Three-dimensional Manifolds. Topology, 21 (1982), 409–442.

    Article  MATH  MathSciNet  Google Scholar 

  8. W.H. Meeks III and S.T. Yau. The Existence of Embedded Minimal Surfaces and the Problem of Uniqueness. Math. Z., 179 (1982), 151–168.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.C.C. Nitsche. On new results in the theory of minimal surfaces. Bull. Am. Math. Soc., 71 (1965), 195–270.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Nelli and H. Rosenberg. Minimal Surfaces in H2 × ℝ. Bull. Braz. Math. Soc., New Series, 33 (2002), 263–292.

    MATH  MathSciNet  Google Scholar 

  11. B. Nelli and H. Rosenberg. Errata Minimal Surfaces in H2 × ℝ. [Bull. Braz. Math. Soc., New Series, 33 (2002), 263–292] Bull. Braz. Math. Soc., New Series, 38(4) (2007), 1–4.

    MathSciNet  Google Scholar 

  12. A.L. Pinheiro. Teorema de Jenkins-Serrin em M 2 × ℝ. Ph.D. thesis, UFRJ (2005).

  13. H. Rosenberg. Minimal Surfaces in M 2 × ℝ. Illinois Journal of Mathematics, 46 (2002), 1177–1195.

    MATH  MathSciNet  Google Scholar 

  14. H. Rosenberg and J. Spruck. On the existence of convex hypersurfaces os Constant Gaus Curvature in Hyperbolic Space. J. Differential Geometry, 40 (1994), 379–409.

    MATH  MathSciNet  Google Scholar 

  15. R. Schoen. Estimates for stable minimal surfaces in three dimensional manifolds. Seminar on Minimal Submanifolds, Princeton Univ. Press (1983), 111–126.

  16. J. Serrin. A Priori Estimates for Solutions of Minimal Surface Equation. Arch. Rational Mech. Anal., 14 (1963), 376–383.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Spruck. Interior gradient estimates and existence theorems for constant mean curvature graphs in M n × ℝ. Pure and Applied Mathematics Quarterly 3(3) (Special Issue: In honor of Leon Simon Part 1 of 2) (2007), 785–800.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lucia Pinheiro.

Additional information

Thanks to CNPq Agency for financial support.

About this article

Cite this article

Pinheiro, A.L. A Jenkins-Serrin theorem in M 2 × ℝ. Bull Braz Math Soc, New Series 40, 117–148 (2009). https://doi.org/10.1007/s00574-009-0007-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-009-0007-y

Keywords

Mathematical subject classification

Navigation