Skip to main content
Log in

Negative entropy, zero temperature and Markov chains on the interval

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We consider ergodic optimization for the shift map on the modified Bernoulli space σ: [0, 1] → [0, 1], where [0, 1] is the unit closed interval, and the potential A: [0, 1] → ℝ considered depends on the two first coordinates of [0, 1]. We are interested in finding stationary Markov probabilities µ on [0, 1] that maximize the value ∫ Adµ, among all stationary (i.e. σ-invariant) probabilities µ on [0, 1]. This problem correspond in Statistical Mechanics to the zero temperature case for the interaction described by the potential A. The main purpose of this paper is to show, under the hypothesis of uniqueness of the maximizing probability, a Large Deviation Principle for a family of absolutely continuous Markov probabilities µ β which weakly converges to µ. The probabilities µ β are obtained via an information we get from a Perron operator and they satisfy a variational principle similar to the pressure in Thermodynamic Formalism. As the potential A depends only on the first two coordinates, instead of the probability µ on [0, 1], we can consider its projection ν on [0, 1]2. We look at the problem in both ways. If µ is the maximizing probability on [0, 1], we also have that its projection ν is maximizing for A. The hypothesis about stationarity on the maximization problem can also be seen as a transhipment problem. Under the hypothesis of A being C 2 and the twist condition, that is,

$$ \frac{{\partial ^2 A}} {{\partial x\partial y}}(x,y) \ne 0, for all (x,y) \in [0,1]^2 , $$

we show the graph property of the maximizing probability ν on [0, 1]2. Moreover, the graph is monotonous. An important result we get is: the maximizing probability is unique generically in Mañé’s sense. Finally, we exhibit a separating sub-action for A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adams. Mathematical Statistical Mechanics. Max-Plank-Institut fur Math., (2006).

  2. K. Athreya and S. Lahiri. Measure Theory and Probability Theory. Springer Verlag, (2006).

  3. V. Bangert. Mather sets for twist maps and geodesics on tori. Dynamics Reported, 1 (1998), 1–56.

    Article  MathSciNet  Google Scholar 

  4. I. Brevik, J-M. Borven and S. Ng. Viscous Brane Cohomology with a Brane-Bulk energy interchange term. General Relativity and Gravitation, 38(5) (2006), 907–915(9).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Baraviera, A.O. Lopes and Ph. Thieullen. A Large Deviation Principle for equilibrium states of Hölder potentials: the zero temperature case. Stoch. and Dyn., 6 (2006), 77–96.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Bhattacharya and M. Majumdar. Random Dynamical Systems. Cambridge Univ. Press, (2007).

  7. W. Chou and R. Griffiths. Ground states of one-dimensional systems using effetive potentials. Physical Review B, 34(9) (1986), 6219–6234.

    Article  Google Scholar 

  8. M. Cveti, S. Nojiri and S.D. Odintsov. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnetgravity. Nuclear Physics B, 628,Issues 1–2, (2002), 295–330.

    Article  MathSciNet  Google Scholar 

  9. P. Bernard and G. Contreras. A Generic Property of Families of Lagrangian Systems. Annals of Math., 167(3) (2008), 1099–1108.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Contreras and R. Iturriaga. Global minimizers of autonomous Lagrangians. 22° Colóquio Brasileiro de Matemática, IMPA, (1999).

  11. G. Contreras, A.O. Lopes and Ph. Thieullen. Lyapunov minimizing measures for expanding maps of the circle. Ergodic Theory and Dynamical Systems, 21 (2001), 1379–1409.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.P. Conze and Y. Guivarc’h. Croissance des sommes ergodiques et principe variationnel. Manuscript circa (1993).

  13. P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobiequations, and optimal control. Progress in Nonlinear Differential Equations and their Applications 58. Birkhäuser Boston Inc., Boston, MA, (2004).

    Google Scholar 

  14. K. Deimling. Nonlinear Functional Analysis. Springer Verlag, (1985).

  15. C. Dellacherie. Probabilities and potential. North-Holland, (1978).

  16. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer Verlag, (1998).

  17. L.C. Evans. Weak Convergence Methods for Nonlinear Partial Differential Equations. Published for the Conference Board of the Mathematical Sciences, Washington, DC, (1990).

    MATH  Google Scholar 

  18. A. Fathi. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. Comptes Rendus de l’Académie des Sciences, Série I, Mathématique, 324 (1997), 1043–1046.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Fathi and A. Siconolfi. Existence of C 1 critical subsolutions of the Hamilton-Jacobi equations. Inv. Math., 155 (2004), 363–388.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Garibaldi and A.O. Lopes. On Aubry-Mather theory for symbolic dynamics. Ergodic Theory and Dynamical Systems, 28,Issue 3 (2008), 791–815.

    MATH  MathSciNet  Google Scholar 

  21. E. Garibaldi, A.O. Lopes and Ph. Thieullen. On separating sub-actions. Preprint (2006). To appear.

  22. D. Gomes, A.O. Lopes and J. Mohr. The Mather measure and a Large Deviation Principle for the Entropy Penalized Method. Preprint (2007). To appear.

  23. C. Gole. Sympletic twist maps. World Sci. Pub Co Inc., (1998).

  24. D.A. Gomes. Viscosity Solution methods and discrete Aubry-Mather problem. Discrete Contin. Dyn. Syst., 13(1) (2005), 103–116.

    Article  MATH  MathSciNet  Google Scholar 

  25. D.A. Gomes. Calculus of Variations. IST — Lisboa, (2006).

  26. D.A. Gomes and E. Valdinoci. Entropy Penalization Methods for Hamilton-Jacobi Equations. Adv. Math., 215(1) (2007), 94–152.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Hopf. An inequality for Positive Linear Integral Operators. Journal of Mathematics and Mechanics, 12(5) (1963), 683–692.

    MATH  MathSciNet  Google Scholar 

  28. O. Jenkinson. Ergodic optimization. Discrete and Continuous Dynamical Systems, Series A, 15 (2006), 197–224.

    MATH  MathSciNet  Google Scholar 

  29. G. Jumarie. Relative Information. Springer Verlag, (1990).

  30. S. Karlin. Total Positivity. Standford Univ. Press, (1968).

  31. E. Lubkin. Negative entropy, energy, and heat capacity in connection with surface tension: Artifact of a model or real?. Inter. Journal of Theoretical Physics, 26(5) (1987), 455–481.

    Article  MathSciNet  Google Scholar 

  32. R. Mañé. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 9 (1996), 273–310.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Mather. Action minimizing invariant measures for positive definite Lagrangian Systems. Math. Z., 207(2) (1991), 169–207.

    Article  MATH  MathSciNet  Google Scholar 

  34. I.D. Morris. A sufficient condition for the subordination principle in ergodic optimization. Bull. Lond. Math. Soc., 39(2) (2007), 214–220.

    Article  MATH  MathSciNet  Google Scholar 

  35. I. Mitra. Introduction to dynamic optimization theory. Optimization and Chaos. Editors M. Majumdar, T. Mitra and K. Nishimura. Springer Verlag, (2000), 31–108.

  36. R.K. Niven. Cost of s-fold Decisions in Exact Maxwell-Boltzmann, Bose-Einsteinand Fermi-DiracStatistics. Physica A, 365,Issue 1 (2006), 142–149.

    Article  Google Scholar 

  37. A. Ostrowski. On positive matrices. Math. Annalen, 150 (1963), 276–284.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Pettini. Geometry and topology in Hamiltonian dynamics and statistical mechanics. Springer Verlag, (2007).

  39. W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque, 187–188 (1990).

  40. S. Rachev and L. Ruschendorf. Mass transportation problems, Vol. I and II. Springer Verlag, (1998).

  41. R.T. Rockafellar. Extention of Fenchel’s duality theorem for convex functions. Duke Math. J., 33 (1966), 81–89.

    Article  MATH  MathSciNet  Google Scholar 

  42. S. Risau-Gusman A.C. Ribeiro-Teixeira and D.A. Stariolo. Topology and Phase Transitions: The Case of the Short Range Spherical Model. Journ. of Statist. Physics, 124(5) (2006), 1231–1253.

    Article  MATH  MathSciNet  Google Scholar 

  43. H.H. Schaefer. Banach Lattices and Positive Operators. Springer Verlag, (1974).

  44. F. Spitzer. A Variational characterization of finite Markov chains. The Annals of Mathematical Statistics, 43(1) (1972), 303–307.

    Article  MATH  MathSciNet  Google Scholar 

  45. M. Takahashi. Thermodynamics of one-dimensional solvable models. Cambridge Press, (2005).

  46. C. Thompson. Infinite-Spin Ising Model in one dimension. Journal of Mathematical Physics, 9(2) (1968), 241–245.

    Article  Google Scholar 

  47. A. van Enter, S. Romano and V. Zagrebnov. First-order transitions for some generalized XY models. J. Phys. A., 39(26) (2006), 439–445.

    Article  MathSciNet  Google Scholar 

  48. W.F. Wrezinski and E. Abdalla. A precise formulation of the third law of thermodynamics with applications to statistical physics and black holes. Preprint USP (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Lopes.

About this article

Cite this article

Lopes, A.O., Mohr, J., Souza, R.R. et al. Negative entropy, zero temperature and Markov chains on the interval. Bull Braz Math Soc, New Series 40, 1–52 (2009). https://doi.org/10.1007/s00574-009-0001-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-009-0001-4

Keywords

Mathematical subject classification

Navigation