Skip to main content

Advertisement

Log in

Mycorrhizal impact on competitive relationships and yield parameters in Phaseolus vulgaris L. — weed mixtures

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are known to improve plant growth and nutrition and therefore are likely to affect the competitive relationships between crops and weeds. In this study, we evaluated whether AMF (Funneliformis mosseae, Rhizoglomus fasciculatum, Rhizoglomus intraradices) change plant competition between Phaseolus vulgaris and the weeds Solanum nigrum L., Digitaria sanguinalis L., and Ipomoea purpurea L. Mycorrhizal colonization, aggressivity index, photosynthetic rates, and yield parameters were measured. While the presence of AMF reduced the total biomass of D. sanguinalis and S. nigrum when grown in competition with P. vulgaris, it increased the total biomass of I. purpurea when grown with P. vulgaris. Significantly, elevated mycorrhizal growth responses (38–44%) improved the competitive ability of I. purpurea. In contrast, the competitive ability of S. nigrum was increased only when plants colonized by R. intraradices. The total protein content of P. vulgaris pods when in competition was negatively affected by AMF, thus leading to low nutritional quality. The results suggest that AMF have the potential to affect the outcome of weed—P. vulgaris competition. We demonstrate that not only colonization with AMF but also AMF species can affect the competitive relationships between crops and weeds, and thus, AMF represent key soil organisms to be taken into account in sustainable weed management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available from the corresponding author.

References

  • Aerts R, Chapin FS III (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  Google Scholar 

  • Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39:153–170

    Article  Google Scholar 

  • Aguyoh JN, Masiunas JB (2003) Interference of large crabgrass (Digitaria sanguinalis) with snap beans. Weed Sci 51:171–176

    Article  CAS  Google Scholar 

  • Ahmadi A, Mirzaei TR, Mousavi SK, Mohammadi H (2007) Determination of the critical period of weed control in dry bean using a thermal basis. Iran J Weed Sci 3:21–38

    Google Scholar 

  • Allen MF, Allen EB, Friese CF (1989) Responses of the non7hyphen; mycotrophic plant Salsola kali to invasion by vesicular–arbuscular mycorrhizal fungi. New Phytol 111:45–49

    Article  Google Scholar 

  • Arnon D, Hoagland D (1939) A comparison of water culture and soil as media for crop production. Science 89:512–514

    Article  CAS  PubMed  Google Scholar 

  • Bates RT, Gallagher RS, Curran WS, Harper JK (2012) Integrating mechanical and reduced chemical weed control in conservation tillage corn. Agron J 104:507–517

    Article  Google Scholar 

  • Bjorkman O (1976) Adaptive and genetic aspects of C4 photosynthesis. In: Burris RH, Black CC (eds) Metabolism and Plant Productivity. University Park Press, Baltimore, Madison, pp 287–309

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buchanan GA, Burns ER (1971) Weed competition in cotton, I: sicklepod and tall morningglory. Weed Sci 19:576–579

    Article  Google Scholar 

  • Bukun B (2004) Critical periods for weed control in cotton in Turkey. Weed Res 44:404–412

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology. Springer, New York

    Book  Google Scholar 

  • Chen D et al (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6:1–15

    Article  Google Scholar 

  • Crowley RH, Buchanan GA (1978) Competition of four morning glory (Ipomoea spp.) species with cotton (Gossypium hirsutum). Weed Sci 26:484–488

    Article  Google Scholar 

  • Crush J (1974) Plant growth responses to vesicular-arbuscular mycorrhiza VII. Growth and modulation of some herbage legumes. New Phytol 73:743–749

    Article  CAS  Google Scholar 

  • Dawit D, Sharma J, Lisanework N (2011) Effect of pendimethalin and S-metolachlor application rates on weed dynamics and yield of common bean (Phaseolus vulgaris L.) at Areka. Ethiopia Ethiopian Journal of Weed Management 4:37–53

    Google Scholar 

  • Edwards GE, Huber SC (1981) The C4 pathway. In: Hatch MD, Boardman NK (eds) The biochemistry of plants. Academic Press, New York, A comprehensive treatise, pp 237–281

    Google Scholar 

  • Espinosa-Páez E, Alanis-Guzmán M, Hernández-Luna CE, Báez-González JG, Amaya-Guerra CA, Andrés-Grau AM (2017) Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus Fungus. Molecules 22:1–11

    Article  CAS  Google Scholar 

  • Flint EP, Patterson DT, Beyers JL (1983) Interference and temperature effects on growth of cotton (Gossypium hirsutum), spurred anoda (Anoda cristata), and velvetleaf (Abutilon theophrasti). Weed Sci 31:892–898

    Article  Google Scholar 

  • Francis R, Read D (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73:1301–1309

    Article  Google Scholar 

  • Ganjeali A, Ashiani E, Zare M, Tabasi E (2018) Influences of the arbuscular mycorrhizal fungus Glomus mosseae on morphophysiological traits and biochemical compounds of common bean (Phaseolus vulgaris) under drought stress. S Afr J Plant Soil 35:121–127

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis1 methods of soil analysis: part 1—physical and mineralogical methods (Methodsofsoilan1), pp 383–411

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace E, Cotsaftis O, Tester M, Smith F, Smith S (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes .New Phytol 181:938–949

  • Habte M, Turk D (1991) Response of two species of cassia and Gliricidia sepium to vesicular-arbuscular mycorrhizal infection. Commun Soil Sci Plant Anal 22:1861–1872

    Article  Google Scholar 

  • Hall I (1978) Effects of endomycorrhizas on the competitive ability of white clover. New Zeal J Agr Res 21:509–515

    Article  Google Scholar 

  • Hayman D, Mosse B (1972) role of vesicular-arbuscular mycorrhiza in the removal of phosphorus from soil by plant roots. Rev Ecol Biol Sol 9:463–470

    CAS  Google Scholar 

  • Hikosaka K, Osone Y (2009) A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity? J Plant Res 122:245–251

    Article  CAS  PubMed  Google Scholar 

  • Høgh-Jensen H (2006) The nitrogen transfer between plants: an important but difficult flux to quantify. Plant Soil 282:1–5

    Article  CAS  Google Scholar 

  • Islam M, Kim JW, Begum M, Sohel M, Taher A, Lim Y-S (2020) Physiological and biochemical changes in sugar beet seedlings to confer stress adaptability under drought condition .Plants 9:1511

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham J, Smith F (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Johnson RJ (1971) Effect of weed competition on sunflower. Weed Sci 19:378–380

    Article  Google Scholar 

  • Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol Invasions 10:177–190

    Article  Google Scholar 

  • Kebede M, Sharma J, Tana T, Nigatu L (2013) Influence of weed dynamics on the productivity of common bean (Phaseolus vulgaris L.) in Eastern Ethiopia. East Afr J Sci 7:109–120

    Google Scholar 

  • Lim T (2012) Phaseolus vulgaris. In: Edible medicinal and non-medicinal plants. Springer, pp 815–848

  • Lin G, McCormack ML, Guo D (2015) Arbuscular mycorrhizal fungal effects on plant competition and community structure. J Ecol 103:1224–1232

    Article  CAS  Google Scholar 

  • Mariotte P, Vandenberghe C, Kardol P, Hagedorn F, Buttler A (2013) Subordinate plant species enhance community resistance against drought in semi-natural grasslands. Jo Ecol 101:763–773

    Article  Google Scholar 

  • McGilchrist C, Trenbath B (1971) A revised analysis of plant competition experiments. Biometrics 21:659–671

    Article  Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra D, Uniyal N, Panneerselvam P, Senapati A, Ganeshamurthy A (2019) Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture International. Int J Life Sci Appl Sci 1:1–10

    Google Scholar 

  • Mohammadi G, Amiri F (2011) Critical period of weed control in soybean (Glycine max) as influenced by starter fertilizer Australian. J Crop Sci 5:1350–1355

    CAS  Google Scholar 

  • Moyer-Henry KA (2006) Plant responses to stress in acid environments: an assessment of the role of mycorrhizal fungi. Graduate Faculty of North Carolina State University, North Carolina

    Google Scholar 

  • Mukhongo R, Tumuhairwe J, Ebanyat P, AbdelGadir AH, Thuita M, Masso C (2016) Production and use of arbuscular mycorrhizal fungi inoculum in Sub-Saharan Africa: challenges and ways of improving. Int J Soil Sci 11:108–122

    Article  Google Scholar 

  • Nazeri NK, Lambers H, Tibbett M, Ryan MH (2014) Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant Cell Environ 37:911–921

    Article  CAS  PubMed  Google Scholar 

  • Okon I, Osonubi O, Sanginga N (1996) Vesicular-arbuscular mycorrhiza effects on Gliricidia sepium and Senna siamea in a fallowed alley cropping system. Agrofor Syst 33:165–175

    Article  Google Scholar 

  • Oliver LR, Frans ER, Talbert RE (1976) Field competition between tall morning glory and soybean. Weed Sci 24:482–488

    Article  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department Of Agriculture, Washington

    Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange A, Jones T (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Pereira M, Teixeira R, Souza G, Silva J, Martins D (2011) Inhibition of the initial development of sunflower, corn and triticale plants by crabgrass. Planta Daninha 29:305–310

    Article  Google Scholar 

  • Phillips JM, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Rinaudo V, Bàrberi P, Giovannetti M, van der Heijden MG (2010) Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:7–20

    Article  CAS  Google Scholar 

  • Rouphael Y et al (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Scheublin TR, Van Logtestijn RS, Van Der Heijden MG (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638

    Article  CAS  Google Scholar 

  • Shinde B, Jaya T (2015) Influence of arbuscular mycorrhizal fungi on chlorophyll, proteins, proline and total carbohydrates content of the pea plant under water stress condition. Int J Curr Microbiol Appl Sci 4:809–821

    CAS  Google Scholar 

  • Smith FA, Smith SE (2013) How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning? Plant Soil 363:7–18

    Article  CAS  Google Scholar 

  • Smith S, Read D (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants Mycorrhizal symbiosis, 3rd edn. Academic Press, London, pp 145–148

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic press, London

    Google Scholar 

  • Stagnari F, Pisante M (2011) The critical period for weed competition in French bean (Phaseolus vulgaris L.) in Mediterranean areas. Crop Prot 30:179–184

    Article  Google Scholar 

  • Sun Z, Song J, Xa X, Xie X, Zhao B (2018) Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Front Microbiol 5:9–19

    Google Scholar 

  • Ugen MA, Wien HC, Wortmann CS (2002) Dry bean competitiveness with annual weeds as affected by soil nutrient availability. Weed Sci 50:530–535

    Article  CAS  Google Scholar 

  • Uko AE, Udo IA, Effa EB (2019) Research article growth and yield responses of groundnut (Arachis hypogaea L.) to arbuscular mycorrhizal fungi inoculation in Calabar. Nigeria Asian J Plant Sci 11:8–16

    Google Scholar 

  • Van Der Heijden MG (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: Mycorrhizal ecology. Springer, pp 243–265

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Vatovec C, Jordan N, Huerd S (2005) Responsiveness of certain agronomic weed species to arbuscular mycorrhizal fungi. Renew Agri Food Syst 20:181–189

    Article  Google Scholar 

  • Vázquez-de-Aldana BR, García-Criado B, Vicente-Tavera S, Zabalgogeazcoa I (2013) Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One 8:e84539

  • Veiga RS, Jansa J, Frossard E, van der Heijden MG (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PloS one 6:e27825

  • Wagg C, Jansa J, Stadler M, Schmid B, Van Der Heijden MG (2011) Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92:1303–1313

    Article  PubMed  Google Scholar 

  • Wilson RG (1993) Wild proso millet (Panicum miliaceum) interference in dry beans (Phaseolus vulgaris) Weed Sci 41:607–610.

  • Woolley BL, Michaels TE, Hall MR, Swanton CJ (1993) The critical period of weed control in white bean (Phaseolus vulgaris) Weed Sci 41:180–184

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Zhang F-J, Li Q, Chen F-X, Xu H-Y, Wan F-H (2017) Arbuscular mycorrhizal fungi facilitate growth and competitive ability of an exotic species Flaveria bidentis. Soil Biol Biochem 115:275–284

    Article  CAS  Google Scholar 

  • Zimdahl RL (2018) Fundamentals of weed science. Academic press, San Diego, CA, USA

    Google Scholar 

Download references

Funding

This research was funded by the University of Zanjan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.R.Y., M.P., and N.G.; Methodology, A.R.Y., M.P., and N.G.; Formal analysis, S.R., A.R.Y., and M.P.; Investigation, S.R., A.R.Y, M.P., and N.G.; Writing—original draft preparation, S.R.; Writing—review and editing, A.R.Y., M.P., N.G.; Supervision, A.R.Y., M.P., and N.G.; Funding acquisition, A.R.Y. and M.P.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ali Reza Yousefi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, S., Yousefi, A.R., Pouryousef, M. et al. Mycorrhizal impact on competitive relationships and yield parameters in Phaseolus vulgaris L. — weed mixtures. Mycorrhiza 31, 599–612 (2021). https://doi.org/10.1007/s00572-021-01046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-021-01046-1

Keywords

Navigation