Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge
Google Scholar
Arioka T (1997) Matsutake. Hosei University Press, Tokyo (In Japanese)
Google Scholar
Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N, (1996) Working with Mycorrhizas in Forestry and Agriculture. Australian Centre for InternationalAgricultural Research, Canberra.
Cairney JWG, Chambers SM (eds) (1999) Ectomycorrhizal fungi: Key genera in profile. Springer, Berlin
Google Scholar
Cooke RC, Whipps JM (1993) Ecophysiology of Fungi. Wiley-Blackwell, Hoboken, NJ
Google Scholar
Endo N, Dokmai P, Suwannasai N, Phosri C, Horimai Y, Hirai N, Masaki F, Yamada A (2015) Ectomycorrhization of Tricholoma matsutake with Abies veitchii and Tsuga diversifolia in the subalpine forests of Japan. Mycoscience 56:402–412. https://doi.org/10.1016/j.myc.2014.12.004
Article
Google Scholar
Fukuda M, Mori Y (2003) Genetic differences in wild strains of Lentinula edodes collected from a single fallen tree. Mycoscience 44:365–368. https://doi.org/10.1007/s10267-003-0127-y
CAS
Article
Google Scholar
Fukuda M, Mori Y, Yamada A (2007) Genetic variability among Pholiota aurivella isolates from a small natural population. Mycoscience 48:381–387. https://doi.org/10.1007/s10267-007-0381-5
CAS
Article
Google Scholar
Furukawa H, Masuno K, Takeuchi Y (2016) Forest management of matsutake productive sites for the optimization to global warming. Annu Rep Nagano Pref For Res Cent 30:87–100 ((In Japanese))
Google Scholar
Gisusi S, Azuma T, Yoshida S, Yoneyama S, Harada A, Tsuda M, Tamai Y (2019) Investigation of soil environments in the vicinity of Tricholoma matsutake mycelium in Abies sachalinensis stand. Jpn J Mycol 60: 43–48 (In Japanese). https://doi.org/10.18962/jjom.jjom.H31-02
Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K (2002) Identification of a prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1 spacer characterization. Mycol Res 106:435–443. https://doi.org/10.1017/S0953756202005725
CAS
Article
Google Scholar
Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F (2004) The mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14:397–400. https://doi.org/10.1007/s00572-004-0322-5
Article
PubMed
Google Scholar
Hall I, Wang Y, Danell E, Zambonelli A (2002) Edible mycorrhizal mushrooms and their cultivation. Proceedings of the Second International Conference on Edible Mycorrhizal Mushrooms, Christchurch, New Zealand
Hamada M (1970) Diaries on Armillaria matsutake (5). Trans Mycol Soc Jpn 11:81–86 ((in Japanese))
Google Scholar
Horimai Y, Misawa H, Suzuki K, Fukuda M, Furukawa H, Masuno K, Yamanaka T, Yamada A (2020) Sibling spore isolates of Tricholoma matsutake vary significantly in their ectomycorrhizal colonization abilities on pine hosts in vitro and form multiple intimate associations in single ectomycorrhizal roots. Fungal Ecol 43. https://doi.org/10.1016/j.funeco.2019.100874
Hosford D, Pilz D, Molina R, Amaranthus MP (1997) Ecology and management of the commercially harvested American matsutake mushroom. USDA For Serv Gen Tech Rep 1027 PNW-412, Portland, Ore
Ito T, Ogawa M (1979) Cultivation method of the mycorrhizal fungus, Tricholoma matsutake (Ito et Imai) Sing. (II) Increasing number of shiro (fungal colony) T. matsutake by thinning the understory vegetation. J Jpn For Soc 61: 163–173 (In Japanese). https://doi.org/10.11519/jjfs1953.61.5_163
Ka K-H, Kim H-S, Hur T-C, Park H, Jeon S-M, Ryoo R (2018) Analysis of environment and production of Tricholoma matsutake in matsutake-infected pine trees. Korean J Mycol 46:34–42. https://doi.org/10.4489/KJM.20180005
Article
Google Scholar
Kareki K, Kawakami Y (1985) Artificial formation of shiro (fungus colony) by planting the pine saplings infected with Tricholoma matsutake (Ito et Imai) Sing. Ann Rep Hiroshima Pref For Exp Sta 20:13–23 ((in Japanese))
Google Scholar
Kobayashi H, Watahiki T, Kuramochi M, Onose K, Yamada A (2007) Production of pine seedlings with the shiro-like structure of the matsutake mushroom (Tricholoma matsutake (S. Ito et Imai) Sing.) in a large culture bottle. Mushroom Sci Biotechnol 15:151–155 ((in Japanese))
Google Scholar
Kobayashi H, Terasaki M, Yamada A (2015) Two-year survival of Tricholoma matsutake ectomycorrhizas on Pinus densiflora seedlings after outplanting to a pine forest. Mushroom Sci Biotechnol 23: 108–113. https://doi.org/10.24465/msb.23.3_108
Lian C, Narimatsu N, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836. https://doi.org/10.1111/j.1469-8137.2006.01801.x
Article
PubMed
Google Scholar
Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Vaario L-M, Suzuki K (2005) Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46:90–96. https://doi.org/10.1007/s10267-004-0220-x
CAS
Article
Google Scholar
Matsutake Research Association (1964) Matsutake (Tricholoma matsutake Singer)—its fundamental studies and economic production of the fruitbody. Matsutake Research Association, Kyoto (in Japanese)
Google Scholar
Min B, Yoon H, Park J, Oh Y-L, Kong WS, Kim J-G, Choi I-G (2020) Unusual genome expansion and transcription suppression in ectomycorrhizal Tricholoma matsutake by insertions of transposable elements. PLoS One 15(1):e0227923. https://doi.org/10.1371/journal.pone.0227923
CAS
Article
PubMed
PubMed Central
Google Scholar
Murata H, Babasaki K, Yamada A (2005a) Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on σmarY1, the long terminal repeat of gypsy-type retroelement marY1. Mycorrhiza 15:179–186. https://doi.org/10.1007/s00572-004-0319-0
CAS
Article
PubMed
Google Scholar
Murata H, Ohta A, Yamada A, Narimatsu M, Futamura N (2005b) Genetic mosaics in the massive persisting rhizosphere colony “shiro” of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15:505–512. https://doi.org/10.1007/s00572-005-0358-1
CAS
Article
PubMed
Google Scholar
Murata H, Ota Y, Yamaguchi M, Yamada A, Katahata S, Otsuka Y, Babasaki K, Neda H (2013) Mobile DNA distributions refine the phylogeny of “matsutake” mushrooms. Tricholoma sect. Caligata. Mycorrhiza 23:447–461. https://doi.org/10.1007/s00572-013-0487-x
Article
PubMed
Google Scholar
Murata H, Ohta A, Yamada A, Horimai Y, Katahata S, Yamaguchi M, Neda H (2015) Monokaryotic hyphae germinated from a single spore of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycoscience 56:287–292. https://doi.org/10.1016/j.myc.2014.08.004
CAS
Article
Google Scholar
Narimatsu M, Koiwa T, Masaki T, Sakamoto Y, Ohmori H, Tawaraya K (2015) Relationship between climate, expansion rate, and fruiting in fairy rings (‘shiro’) of an ectomycorrhizal fungus Tricholoma matsutake in a Pinus densiflora forest. Fungal Ecol 15:18–28. https://doi.org/10.1016/j.funeco.2015.02.001
Article
Google Scholar
Narimatsu M, Koiwa T, Sakamoto Y, Natsume S, Kurokochi H, Lian C, Nakajima Y, Nakade K, Yoshida K, Tawaraya K (2016) Estimation of novel colony establishment and persistence of the ectomycorrhizal basidiomycete Tricholoma matsutake in a Pinus densiflora forest. Fungal Ecol 24:35–43. https://doi.org/10.1016/j.funeco.2016.08.001
Article
Google Scholar
Ogawa M (1978) The biology of matsutake. Tsukiji-shokan, Tokyo (In Japanese)
Google Scholar
Ogawa M, Umehara T, Kontani S, Yamaji K (1978) Cultivation method of the mycorrhizal fungus, Tricholoma matsutake (Ito et Imai) Sing. (I) Growing method of the saplings infected with T. matsutake in the field. J Jpn For Soc 60: 119–128 (In Japanese). https://doi.org/10.11519/jjfs1953.60.4_119
Ogawa M, Ito T, Kobayashi F, Fujita H (1980) On the primary stage of “shiro” formation of Tricholoma matsutake. Trans Mycol Soc Jpn 21:505–512 ((In Japanese))
Google Scholar
Ohta A (1988) Effects of butyric acid and related compounds on basidiospore germination of some mycorrhizal fungi. Trans Mycol Soc Jpn 29: 375–381
Park H, Ka K-H (2010) Spore dispersion of Tricholoma matsutake at a Pinus densiflora stand in Korea. Mycobiology 38:203–205. https://doi.org/10.4489/MYCO.2010.38.3.203
Article
PubMed
PubMed Central
Google Scholar
Raper JR (1966) Genetics of sexuality in higher fungi. The Ronald Press Company, New York
Google Scholar
Saito C, Ogawa W, Kobayashi H, Yamanaka T, Fukuda M, Yamada A (2018) In vitro ectomycorrhization of Tricholoma matsutake strains is differentially affected by soil type. Mycoscience 59:89–97. https://doi.org/10.1016/j.myc.2017.09.002
Article
Google Scholar
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam
Google Scholar
Stenlid J (2008) Population biology of forest decomposer basidiomycetes. In: Boddy L, Frankland J, van West P (eds), Ecology of saprotrophic basidiomycetes. Academic Press, London, pp 105–122. https://doi.org/10.1016/S0275-0287(08)80008-2
Vaario L-M, Yang X, Yamada A (2017) Biogeography of the Japanese gourmet fungus, Tricholoma matsutake: a review of the distribution and functional ecology of Matsutake. In: Tedersoo, L. (ed.), Biogeography of Mycorrhizal Symbiosis. Ecological Studies (Analysis and Synthesis), vol. 230. Springer, Cham, pp. 319–344. https://doi.org/10.1007/978-3-319-56363-3_15
Yamada A, Katsuya K (1995) Mycorrhizal association of isolates from sporocarps and ectomycorrhizas with Pinus densiflora seedlings. Mycoscience 36:315–323. https://doi.org/10.1007/BF02268607
Article
Google Scholar
Yamada A, Kanekawa S, Ohmasa M (1999) Ectomycorrhiza formation of Tricholoma matsutake on Pinus densiflora. Mycoscience 40:193–198. https://doi.org/10.1007/BF02464298
Article
Google Scholar
Yamada A, Ogura T, Degawa Y, Ohmasa M (2001) Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42:43–50. https://doi.org/10.1007/BF02463974
CAS
Article
Google Scholar
Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro.’ Mycorrhiza 16:111–116. https://doi.org/10.1007/s00572-005-0021-x
Article
PubMed
Google Scholar
Yamada A, Kobayashi H, Murata H, Kalmis E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20:333–339. https://doi.org/10.1007/s00572-009-0286-6
Article
PubMed
Google Scholar
Yamada A, Endo N, Murata H, Ohta A, Fukuda M (2014) Tricholoma matsutake Y1 strain associated with Pinus densiflora shows a gradient of in vitro ectomycorrhizal specificity with Pinaceae and oak hosts. Mycoscience 55:27–34. https://doi.org/10.1016/j.myc.2013.05.004
Article
Google Scholar
Yamada A, Hayakawa N, Saito C, Horimai Y, Misawa H, Yamanaka T, Fukuda M (2019) Physiological variation among Tricholoma matsutake isolates generated from basidiospores obtained from one basidioma. Mycoscience 60:102–109. https://doi.org/10.1016/j.myc.2018.12.001
Article
Google Scholar
Yamanaka T, Ota Y, Yamazaki M, Kawai M, Ohta A, Neda H, Terashima Y, Yamada A (2014) The host ranges of conifer-associated Tricholoma matsutake, Fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycologia 106:397–406. https://doi.org/10.3852/13-197
Article
PubMed
Google Scholar
Yamanaka T, Yamada A, Furukawa H (2020) Researches for the cultivation of Tricholoma matsutake, a highly-prized ectomycorrhizal mushroom. Mycoscience 61:49–57. https://doi.org/10.1016/j.myc.2020.01.001
Article
Google Scholar
Zambonelli A, Iotti M, Murat C (eds.) (2016) True truffle (Tuber spp.) in the world. Springer, Cham