Skip to main content
Log in

New insights into HcPTR2A and HcPTR2B, two high-affinity peptide transporters from the ectomycorrhizal model fungus Hebeloma cylindrosporum

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

While plants mainly rely on the use of inorganic nitrogen sources like ammonium and nitrate, soil-borne microorganisms like the ectomycorrhizal fungus Hebeloma cylindrosporum can also take up soil organic N in the form of amino acids and peptides that they use as nitrogen and carbon sources. Following the previous identification and functional expression in yeast of two PTR-like peptide transporters, the present study details the functions and substrates of HcPTR2A and HcPTR2B by analysing their transport kinetics in Xenopus laevis oocytes. While both transporters mediated high-affinity di- and tripeptide transport, HcPTR2A also showed low-affinity transport of several amino acids—mostly hydrophobic ones with large side chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Avolio M, Müller T, Mpangara A, Lange C, Becker B, Pauck A, Kirsch A, Fitz M, Wipf D (2012) Regulation of genes involved in nitrogen uptake and metabolism by different C/N ratios and nitrogen sources in the model ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 22:515–524

    Article  CAS  Google Scholar 

  • Becquer A, Torres-Aquino M, Le Guernevé C, Amenc LK, Trives-Segura C, Staunton S, Quiquampoix H, Plassard C (2017) Establishing a symbiotic interface between cultured ectomycorrhizal fungi and plants to follow fungal phosphate metabolism. Bio-Protocol 7:e2577

    Google Scholar 

  • Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L (2014) A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Front Plant Sci 5:436

    Article  Google Scholar 

  • Benjdia M, Rikirsch E, Müller T, Morel M, Corratgé C, Zimmermann S, Chalot M, Frommer WB, Wipf D (2006) Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tri-peptide transporters (HcPTR2A and B). New Phytol 170:401–410

    Article  CAS  Google Scholar 

  • Cai H, Hauser M, Naider F, Becker JM (2007) Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. Eukaryot Cell 6(10):1805–1813

    Article  CAS  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Lett 22:21–44

    Article  CAS  Google Scholar 

  • Chiang CS, Stacey G, Tsay YF (2004) Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J Biol Chem 279:30150–30157

    Article  CAS  Google Scholar 

  • Courty PE, Hoegger P, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U (2009) Phylogenetic analysis, genomic organization and expression analysis of multicopper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 182:736–750

    Article  CAS  Google Scholar 

  • Damon C, Vallon L, Zimmermann S, Haider M, Galeote V, Dequin S, Luis P, Freissinet-Tachet L, Marmeisse R (2011) A novel fungal family of oligopeptide transporters identified by functional metatranscriptomics of soil eukaryotes. ISME J 5(12):1871–1880

    Article  CAS  Google Scholar 

  • Dietrich D, Hammes U, Thor K, Suter-Grotemeyer M, Fluckiger R, Slusarenko AJ, Ward JM, Rentsch D (2004a) AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J 40:488–499

  • Dreyer I, Horeau C, Lemaillet G, Zimmermann S, Bush DR, Rodríguez-Navarro A, Schachtman DP, Spalding EP, Sentenac H, Gaber RF (1999) Identification and characterization of plant transporters using heterologous expression systems. J Exp Bot 50:1073–1087

    CAS  Google Scholar 

  • Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). 1. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    Article  CAS  Google Scholar 

  • Dunkel N, Hertlein T, Franz R, Reuß O, Sasse C, Schäfer T, Ohlsen K, Morschhäuser J (2013) Roles of different peptide transporters in nutrient acquisition in Candida albicans. J Eukaryot Cell 12:520–528

    Article  CAS  Google Scholar 

  • Flores-Monterroso A, Canales J, de la Torre F, Avila C, Canovas FM (2013) Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction. Planta 237:1637–1650

    Article  CAS  Google Scholar 

  • Garcia Z (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337. https://doi.org/10.3389/fpls.2014.00337

  • Guidot A, Gryta H, Gourbiere F, Debaud JC, Marmeisse R (2002) Forest habitat characteristics affect balance between sexual reproduction and clonal propagation of the ectomycorrhizal mushroom Hebeloma cylindrosporum. Oikos 99:25–36

    Article  Google Scholar 

  • Hacquard S, Tisserand E, Brun A, Legué V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol 15:1853–1869

    Article  CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  CAS  Google Scholar 

  • Kitamura K, Kinsui EZB (2018) The benefits and risks of expressing the POT and FOT family of oligopeptide transporters in Saccharomyces cerevisiae. Biosci Biotech Biochem 82(3):540–546

    Article  CAS  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canback B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Dore J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Hogberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Consortium MGI, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry MV, Berger C, Laudie M, Legeai F, Karsenty E, Delseny M, Zimmermann S, Sentenac H (2004) Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol 164:505–513

    Article  CAS  Google Scholar 

  • Ludewig U, von Wirén N, Frommer WB (2002) Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 277:13548–13555

    Article  CAS  Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants. Academic Press, San Diego

    Google Scholar 

  • Marsit S, Mena A, Bigey F, Sauvage FX, Couloux A, Guy J, Legras JL, Barrio E, Dequin S, Galeote V (2015) Evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts. Mol Biol Evol 32(7):1695–1707

    Article  CAS  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    Article  CAS  Google Scholar 

  • Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiol 132:1950–1960

    Article  CAS  Google Scholar 

  • Plett J, Tisserant E, Brun A, Morin E, Grigoriev IV, Kuo A, Martin F, Kohler A (2015) The mutualist Laccaria bicolor expresses a core gene regulon during the colonization of diverse host plants and a variable regulon to counteract host-specific defenses. Mol Plant-Microbe Interact 28:261–273

    Article  CAS  Google Scholar 

  • Reddy VS, Shlykov MA, Castillo R, Sun EI, Saeir MH (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279:2022–2035

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Slayman CL (1985) Plasma-membrane proton pumps in plants and fungi. Bioscience 35:34–37

    Article  CAS  Google Scholar 

  • Steiner HY, Song W, Zahng L, Naider F, Becker JM, Stacey G (1994) An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6:1289–1299

    CAS  Google Scholar 

  • Steiner HY, Naider F, Becker JM (1995) The PTR family: a new group of peptide transporters. Mol Microbiol 16:825–834

    Article  CAS  Google Scholar 

  • Tatry MV, El Kassis E, Lambilliotte R, Corratgé C, van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C (2009) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102

    Article  CAS  Google Scholar 

  • Torres-Aquino M, Becquer A, Le Guernevé C, Louche J, Amenc LK, Staunton S, Quiquampoix H, Plassard C (2017) The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31P NMR spectroscopy study. Plant Cell Environ 40:190–202

    Article  CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  Google Scholar 

  • Williams LE, Miller AJ (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol 52:659–688

    Article  CAS  Google Scholar 

  • Zak DR, Groffman PM, Pregitzer KS, Christensen SK, Tiedje JM (1990) The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecol 71:651–656

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Annie Buchwalter for English editing.

Availability of data and materials

All data and materials are available.

Funding

Our work was partially funded by grants from the Deutsche Forschungsgemeinschaft (Gottfried-Wilhelm-Leibniz; DFG WI1994/2-1 and 2-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wipf.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, T., Neuhäuser, B., Ludewig, U. et al. New insights into HcPTR2A and HcPTR2B, two high-affinity peptide transporters from the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza 30, 735–747 (2020). https://doi.org/10.1007/s00572-020-00983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-00983-7

Keywords

Navigation