Adams MA, Turnbull TL, Sprent JI, Buchmann N (2016) Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc Natl Acad Sci U S A 113:4098–4103
CAS
PubMed Central
Google Scholar
Allen EB, Allen MF (1990) The mediation of competition by mycorrhizae in successional and patchy environments. In: Grace JB (ed) Perspectives on plant competition. Acad. Press, San Diego, pp 367–389
Google Scholar
Brundrett M, Addy H, McGonigle T (1994) Extraction and staining of hyphae from soil. In: Brundrett M, Melville L, Peterson L (eds) . Mycologue Publications, Guelph, pp 24–34
Google Scholar
Chen J, Heikkinen J, Hobbie EA, Rinne-Garmston KT, Penttilä R, Mäkipää R (2019) Strategies of carbon and nitrogen acquisition by saprotrophic and ectomycorrhizal fungi in Finnish boreal Picea abies-dominated forests. Fungal Biol 123:456–464
CAS
Google Scholar
Courty P-E, Doubková P, Calabrese S, Niemann H, Lehmann MF, Vosátka M, Selosse M-A (2015) Species-dependent partitioning of C and N stable isotopes between arbuscular mycorrhizal fungi and their C3 and C4 hosts. Soil Biol Biochem 82:52–61
CAS
Google Scholar
Courty P-E, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, Selosse M-A (2011) Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol 156:952–961
CAS
PubMed Central
Google Scholar
Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu D-G, Declerck S (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Fortin JA, Strullu D-G (eds) In vitro culture of Mycorrhizas. Springer-Verlag Berlin Heidelberg, Berlin, pp 341–375
Google Scholar
Crotty FV, Stocki M, Knight JD, Adl SM (2013) Improving accuracy and sensitivity of isotope ratio mass spectrometry for δ13C and δ15N values in very low mass samples for ecological studies. Soil Biol Biochem 65:75–77
CAS
Google Scholar
DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim et Cosmochim Acta 45(3):341–351
Field KJ, Pressel S (2018) Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytol 220:996–1011
CAS
Google Scholar
Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW (2019) Strong succession in arbuscular mycorrhizal fungal communities. ISME J 13:214–226
Google Scholar
Gebauer G, Dietrich P (1993) Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Isot Environ Healt S 29:35–44
CAS
Google Scholar
Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15
PubMed Central
Google Scholar
Giesemann P, Rasmussen HN, Liebel HT, Gebauer G (2020) Discreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhiza. New Phytol 226:960–966
Google Scholar
Gleixner G, Danier HJ, Werner RA, Schmidt HL (1993) Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing Basidiomycetes. Plant Physiol 102:1287–1290
CAS
PubMed Central
Google Scholar
Gomes SIF, Merckx VSFT, Kehl J, Gebauer G (2020) Mycoheterotrophic plants living on arbuscular mycorrhizal fungi are generally enriched in 13C, 15N, and 2H isotopes. J Ecol 108:1250–1261
CAS
Google Scholar
Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299
CAS
Google Scholar
Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759
CAS
PubMed Central
Google Scholar
Hynson NA, Madsen TP, Selosse M-A, Adam IKU, Ogura-Tsujita Y, Roy M, Gebauer G (2013) The physiological ecology of mycoheterotrophy. In: Merckx VSFT (ed) Mycoheterotrophy: the biology of plants living on Fungi. Springer, New York, pp 297–342
Google Scholar
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175
CAS
PubMed Central
Google Scholar
Joergensen R, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991
CAS
Google Scholar
Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux P-M, Klingl V, von Röpenack-Lahaye E, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6:e29107
PubMed Central
Google Scholar
Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207
CAS
Google Scholar
Luginbuehl LH, Menard GN, Kurup S, van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178
CAS
PubMed Central
Google Scholar
Mahmoudi N, Cruz C, Mahdhi M, Mars M, Caeiro MF (2019) Arbuscular mycorrhizal fungi in soil, roots and rhizosphere of Medicago truncatula: diversity and heterogeneity under semi-arid conditions. PeerJ 7:e6401
PubMed Central
Google Scholar
Marilley L, Vogt G, Blanc M, Aragno M (1998) Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 198:219–224
CAS
Google Scholar
Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596
CAS
Google Scholar
Merckx VSFT (2013) Mycoheterotrophy: an introduction. In: Merckx VSFT (ed) Mycoheterotrophy: the biology of plants living on Fungi. Springer, New York, pp 1–17
Google Scholar
Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418
Google Scholar
Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63
Google Scholar
Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41–47
CAS
Google Scholar
Ngosong C, Gabriel E, Ruess L (2012) Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J Lipids 2012:236807
PubMed Central
Google Scholar
Nichols P, Stulp BK, Jones JG, White DC (1986) Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter. Arch Microbiol 146:1–6
CAS
Google Scholar
Olsson P (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310
CAS
Google Scholar
Olsson PA, van Aarle IM, Gavito ME, Bengtson P, Bengtsson G (2005) 13C incorporation into signature fatty acids as an assay for carbon allocation in arbuscular mycorrhiza. Appl Environ Microbiol 71:2592–2599
CAS
PubMed Central
Google Scholar
Paterson E, Sim A, Davidson J, Daniell TJ (2016) Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant Soil 408:243–254
CAS
Google Scholar
Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18(1):293–320
Rawson HM, Begg JE, Woodward RG (1977) The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 134:5–10
CAS
Google Scholar
Rich MK, Nouri E, Courty P-E, Reinhardt D (2017) Diet of arbuscular mycorrhizal fungi: bread and butter? Trends Plant Sci 22:652–660
CAS
Google Scholar
Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104
CAS
Google Scholar
RStudio Team (2019) RStudio: integrated development for R. MA, Boston
Google Scholar
Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol 129:425–431
CAS
Google Scholar
Schiebold JM-I, Bidartondo MI, Karasch P, Gravendeel B, Gebauer G (2017) You are what you get from your fungi: nitrogen stable isotope patterns in Epipactis species. Ann Bot 119:1085–1095
CAS
PubMed Central
Google Scholar
Schulze E-D, Chapin FS, Gebauer G (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100:406–412
Google Scholar
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London
Google Scholar
Suetsugu K, Matsubayashi J, Ogawa NO, Murata S, Sato R, Tomimatsu H (2020) Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species. Oecologia 192:929–937
Google Scholar
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JPW, Young PW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122
CAS
PubMed Central
Google Scholar
Trudell SA, Rygiewicz PT, Edmonds RL (2004) Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytol 164:317–335
Google Scholar
Ven A, Verbruggen E, Verlinden MS, Olsson PA, Wallander H, Vicca S (2020) Mesh bags underestimated arbuscular mycorrhizal abundance but captured fertilization effects in a mesocosm experiment. Plant Soil 446:563–575
CAS
Google Scholar
Walder F, Niemann H, Lehmann MF, Boller T, Wiemken A, Courty P-E (2013) Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). Soil Biol Biochem 58:341–344
CAS
Google Scholar
Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797
CAS
PubMed Central
Google Scholar
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P-E (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142
CAS
Google Scholar