Skip to main content

Advertisement

Log in

Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) symbiosis plays crucial roles in plant nutrient uptake. However, little is known about the combined effects of phosphorus (P) and magnesium (Mg) on mycorrhizal symbiosis. In the present study, a pot experiment was carried out using two soybean genotypes in the presence or absence of Rhizophagus irregularis inoculation under different P and Mg conditions. The results showed that plant growth promotion by mycorrhizal symbiosis was associated with P-starved nutrition status, high Mg supply augmented the efficiency of AM symbiosis in low P, and high Mg relieved the inhibitory effect of high P availability on AM symbiosis. The P-efficient genotype HN89 was more responsive to Mg application than the P-inefficient genotype HN112 when inoculated with Rhizophagus irregularis. The results from a comparative RNA sequencing analysis of the root transcriptomes showed that several carbon metabolism pathways were enriched in mycorrhizal roots in low P plus high Mg. Accordingly, the expression levels of the key genes related to carbon metabolism and transport were also upregulated in mycorrhizal roots. Conversely, the Mg-deficient mycorrhizal plants showed increased sucrose, glucose, and fructose accumulations in shoots. Overall, the results herein demonstrate that P and Mg interactively affect mycorrhizal responses in plants, and high Mg supply has a profound effect on P-starved mycorrhizal plant growth through promotion of photosynthate metabolism and transport in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The RNA-seq datasets generated in this study have been submitted to NCBI GEO database with the series record GSE132679. The other data are available on request from the authors.

References

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzergue C, Puech-Pages V, Becard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Bezrutczyk M, Yang J, Eom J, Prior M, Sosso D, Hartwig T, Szurek B, Oliva R, Vera-Cruz C, White F, Yang B, Frommer W (2018) Sugar flux and signaling in plant–microbe interactions. Plant J 93:675–685

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ (2017) Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol 214:1631–1645

    Article  CAS  PubMed  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612

    Article  CAS  Google Scholar 

  • Cakmak I, Yazici AM (2010) Magnesium: a forgotten element in crop production. Better Crops 94:23–25

    Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994a) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994b) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fageria VD (2001) Nutrient interactions in crop plants. J Plant Nutr 24:1269–1290

  • Garcia K, Chasman D, Roy S, Ané JM (2017) Physiological responses and gene co-expression network of mycorrhizal roots under K+ deprivation. Plant Physiol 173:1811–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P (2014) Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–619

    Article  CAS  PubMed  Google Scholar 

  • Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368:5–21

    Article  CAS  Google Scholar 

  • Gryndler M, Vejsadová H, Vančura V (1992) The effect of magnesium ions on the vesicular—arbuscular mycorrhizal infection of maize roots. New Phytol 122:455–460

    Article  CAS  PubMed  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicas acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Hetrick B, Wilson G, Cox T (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Koegel S, Ait Lahmidi N, Arnould C, Chatagnier O, Walder F, Ineichen K, Boller T, Wipf D, Wiemken A, Courty PE (2013) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol 198:853–865

    Article  CAS  PubMed  Google Scholar 

  • Krajinski F, Courty PE, Sieh D, Franken P, Zhang H, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, Hause B (2014) The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell 26:1808–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liu J, Liu J, Cui M, Huang Y, Tian Y, Chen A, Xu G (2019) The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiol 180:465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Arredondo D, Leyva-González M, González-Morales S, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  PubMed  CAS  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van EH, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175

    Article  CAS  PubMed  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christiand P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161

    Article  Google Scholar 

  • Marschner A (1995) Mineral nutrition of higher plants. Academic Press, San Diego

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot–root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Jin G, Li X, Tang C, Zhang Y, Liang Y, Yu J (2015) Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. J Exp Bot 66:3841–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson PA, Hansson MC, Burleigh SH (2006) Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl Environ Microbiol 72:4115–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren M (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng WT, Zhang LD, Zhou Z, Fu C, Chen ZC, Liao H (2018) Magnesium promotes root nodulation through facilitation of carbohydrate allocation in soybean. Physiol Plant 163:372–385

    Article  CAS  Google Scholar 

  • Pringle A, Bever JD (2008) Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytol 180:162–175

    Article  PubMed  Google Scholar 

  • Rosenstock NP, Berner C, Smits MM, Krám P, Wallander H (2016) The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests. New Phytol 211:542–553

    Article  CAS  PubMed  Google Scholar 

  • Sisaphaithong T, Kondo D, Matsunaga H, Kobae Y, Hata S (2012) Expression of plant genes for arbuscular mycorrhiza-inducible phosphate transporters and fungal vesicle formation in sorghum, barley and wheat roots. Biosci Biotechnol Biochem 76:2364–2367

    Article  CAS  PubMed  Google Scholar 

  • Skinner PW, Matthews MA (1990) A nove1 interaction of magnesium translocation with the supply of phosphorus to roots of grapevine (Vitis vinifera L.). Plant Cell Environ 13:821–826

    Article  CAS  Google Scholar 

  • Skinner PM, Cook JA, Matthews MA (1988) Phosphorus requirements of winegrapes: vegetative and reproductive growth responses of Chenin blanc and Chardonnay cvs. to phosphorus fertilizer applications. Vitis 27:95–101

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Spatafora J, Chang Y, Benny G, Lazarus K, Smith M, Berbee M, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James T, O’Donnell K, Roberson R, Taylor T, Uehling J, Vilgalys R, White M, Stajich J (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura Y, Kobae Y, Mizuno T, Hata S (2012) Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Biosci Biotechnol Biochem 76:309–313

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang X, Tong Y, Chen X, Liao H (2012) Bioengineering and management for efficient phosphorus utilization in crops and pastures. Curr Opin Biotechnol 23:866–871

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2013) Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368:87–99

    Article  CAS  Google Scholar 

  • Wang X, Yan X, Liao H (2010) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XR, Pan Q, Chen FX, Yan XL, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 27:173–181

    Article  CAS  Google Scholar 

  • Wang E, Yu N, Bano SA, Liu C, Miller AJ, Cousins D, Zhang X, Ratet P, Tadege M, Mysore K, Downie J, Murray J, Oldroyd G, Schultze M (2014) A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. Plant Cell 26:1818–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XR, Zhao SP, Bücking H (2016) Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphorus efficiency. Ann Bot 118:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Article  Google Scholar 

  • Xiao JX, Hu CY, Chen YY, Hua J, Yang B (2015) Growth and nutrient content of trifoliate orange seedlings influenced by arbuscular mycorrhizal fungi inoculation in low magnesium soil. J Plant Nutr 38:1516–1529

    Article  CAS  Google Scholar 

  • Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198:836–852

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Du P, Song C, Wu Q (2015a) Alleviation of mycorrhiza to magnesium deficiency in trifoliate orange: changes in physiological activity. Emir J Food Agric 27:763–769

    Article  Google Scholar 

  • Zhang S, Zhou J, Wang GH, Wang XR, Liao H (2015b) The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Appl Microbiol Biotechnol 99:10225–10235

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Chen A, Chen C, Li C, Xia R, Wang X (2019) Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Physiol Plant 166:712–728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Z.C. Chen and Ruipeng Yu for helpful discussions and comments.

Funding

This research is financially supported by the National Key R&D Program of China (2017YFD0200200/2017YFD0200203), and Key Realm R&D Program of Guangdong Province (2018B020205003).

Author information

Authors and Affiliations

Authors

Contributions

XW conceived the experiments. XW, JQ, HW, HC, and KC designed and performed the experiments. XW and JQ drafted the manuscript. XW edited the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Xiurong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Wang, H., Cao, H. et al. Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean. Mycorrhiza 30, 285–298 (2020). https://doi.org/10.1007/s00572-020-00955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-00955-x

Keywords

Navigation