Abstract
Many studies describing communities of arbuscular mycorrhizal fungi (AMF, Glomeromycota) based on high-throughput sequencing target the V4 variable region of the 18S ribosomal gene. However, an accurate taxonomic assignment of these short 18S sequences is challenging. Here we describe a simple approach based on a phylogenetic analysis using a backbone of reference sequences with taxonomic names updated in MycoBank to improve the taxonomic assignment of amplicon sequence variants (ASVs). As a case study, paired-end sequencing (2 × 250 bp) was carried out to describe the community of AMF associated with Tamarix aphylla from Algerian steppe ecosystems. AMF from root and soil samples were targeted with a nested PCR, using the AMF-discriminating primers pair AML1/AML2 for the first amplification and a new primer pair for the second. The proportion of the sequences assigned to Glomeromycota was 85.9%, representing a total of 87 ASVs. Seven well-defined genera (Claroideoglomus, Dominikia, Funneliformis, Innospora, Microkamienskia, Rhizophagus, Septoglomus) and seven phylogenetic divergent clades of Glomus (27% of the ASVs) were identified with the proposed approach. This taxonomic assignment was in sharp contrast with querying the MaarjAM or GenBank databases. Out-of-date taxonomy led the MaarjAM database to attribute 85% of the ASVs to the genus Glomus and the GenBank database to assign 18% of the ASVs to unclassified taxa. We recommend using the simple workflow presented in this study so that up-to-date taxonomic information is accurately assigned to AMF communities analyzed by high-throughput sequencing.
This is a preview of subscription content,
to check access.




References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/s0022-2836(05)80360-2
Bencherif K, Boutekrabt A, Fontaine J, Lounès Hadj-Sahraoui A (2015) Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ 533:488–494. https://doi.org/10.1016/j.scitotenv.2015.07.007
Bencherif K, Boutekrabt A, Dalpé Y et al (2016) Soil and seasons affect arbuscular mycorrhizal fungi associated with Tamarix rhizosphere in arid and semi-arid steppes. Appl Soil Ecol 107:182–190. https://doi.org/10.1016/j.apsoil.2016.06.003
Bencherif K, Dalpé Y, Lounès Hadj-Sahraoui A (2019a) Arbuscular mycorrhizal fungi alleviate soil salinity stress in arid and semiarid areas. In: Giri B, Varma A (eds) Microorganisms in saline environments: strategies and functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_16
Bencherif K, Dalpé Y, Lounès-Hadj Sahraoui A (2019b) Influence of native arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Tamarix shrubs under different salinity levels. In: Giri B, Varma A (eds) Microorganisms in saline environments: strategies and functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_11
Bencherif K, Djaballah Z, Brahimi F et al (2019c) Arbuscular mycorrhizal fungi affect total phenolic content and antimicrobial activity of Tamarix gallica in natural semi-arid Algerian areas. S Afr J Bot 125:39–45. https://doi.org/10.1016/j.sajb.2019.06.024
Berruti A, Desirò A, Visentin S, Zecca O, Bonfante P (2017) ITS fungal barcoding primers versus 18S AMF specific primers reveal similar AMF based diversity patterns in roots and soils of three mountain vineyards. Environ Microbiol Rep 9:658–667. https://doi.org/10.1111/1758-2229.12574
Błaszkowski J, Wubet T, Harikumar V et al (2010) Glomus indicum, a new arbuscular mycorrhizal fungus. Botany 88:132–143. https://doi.org/10.1139/b09-104
Błaszkowski J, Chwat G, Góralska A et al (2015) Two new genera, Dominikia and Kamienskia, and D. disticha sp. nov. in Glomeromycota. Nova Hedwigia 100:225–238. https://doi.org/10.1127/nova_hedwigia/2014/0216
Błaszkowski J, Ryszka P, Kozłowska A (2018) Dominikia litorea, a new species in the Glomeromycotina, and biogeographic distribution of Dominikia. Phytotaxa 338:241–254. https://doi.org/10.11646/phytotaxa.338.3.2
Bolyen E, Rideout J, Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver L, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft J, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:848–857. https://doi.org/10.1038/s41587-019-0209-9
Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:3869. https://doi.org/10.1038/nmeth.3869
Callahan B, McMurdie P, Holmes S (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11(12):2639–2643. https://doi.org/10.1038/ismej.2017.119
Chao A, Gotelli NJ, Hsieh T et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1
Corazon-Guivin M, Cerna-Mendoza A, Guerrero-Abad J et al (2019) Microkamienskia gen. nov. and Microkamienskia peruviana, a new arbuscular mycorrhizal fungus from Western Amazonia. Nova Hedwigia 109:355–368. https://doi.org/10.1127/nova_hedwigia/2019/0551
Crous PW, Gams W, Stalpers JA et al (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22
Cui X, Hu J, Wang J, Yang J et al (2016) Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Appl Soil Ecol 98:140–149. https://doi.org/10.1016/j.apsoil.2015.10.008
de Souza F, da Silva I, de Barreto M et al (2018) Racocetra crispa (Glomeromycotina) delimited by integrative evidence based on morphology, long continuous nuclear rDNA sequencing and phylogeny. Mycol Prog 17:999–1011. https://doi.org/10.1007/s11557-018-1410-9
Diem H, Gueye I, Gianinazzi-Pearson V et al (1981) Ecology of VA mycorrhizae in the tropics: the semi-arid zone of Senegal. Acta oecol Oecol Plant 2:53–62
Emberger L (1955) Une classification biogéographique des climats. Rapport des travaux du laboratoire de Botanique, Faculté des sciences, Montpellier, 7 :1–43
Fadrosh D, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2:6. https://doi.org/10.1186/2049-2618-2-6
Federhen S (2011) The NCBI taxonomy database. Nucleic Acids Res 40(Database issue):D136–D143. https://doi.org/10.1093/nar/gkr1178
Gargas A, DePriest PT (1996) A nomenclature for fungal PCR primers with examples from intron-containing SSU rDNA. Mycologia 88:745–748. https://doi.org/10.1080/00275514.1996.12026712
Guisande C, Heine J, García-Roselló E et al (2017) DER: an algorithm for comparing species diversity between assemblages. Ecol Indic 81:41–46. https://doi.org/10.1016/j.ecolind.2017.05.049
Hart MM, Aleklett K, Chagnon P-L et al (2015) Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New Phytol 207:235–247. https://doi.org/10.1111/nph.13340
Hsieh T, Ma K, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210x.12613
Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223. https://doi.org/10.1111/j.1469-8137.2009.02835.x
Krüger M, Krüger C, Walker C, Stockinger H, Schüssler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. https://doi.org/10.1111/j.1469-8137.2011.03962.x
Lamble S, Batty E, Attar M, Buck D, Bowden R, Lunter G, Crook D, el-Fahmawi B, Piazza P (2013) Improved workflows for high throughput library preparation using the transposome-based Nextera system. BMC Biotechnol 13:104. https://doi.org/10.1186/1472-6750-13-104
Lee J, Lee S, Young PJ (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. https://doi.org/10.1111/j.1574-6941.2008.00531.x
Lumini E, Orgiazzi A, Borriello R et al (2009) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179. https://doi.org/10.1111/j.1462-2920.2009.02099.x
Maeda T, Kobayashi Y, Kameoka H, Okuma N, Takeda N, Yamaguchi K, Bino T, Shigenobu S, Kawaguchi M (2018) Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis. Commun Biol 1:11841–11813. https://doi.org/10.1038/s42003-018-0094-7
Mahé S, Duhamel M, Calvez T et al (2012) PHYMYCO-DB: a curated database for analyses of fungal diversity and evolution. PLoS One 7:e43117. https://doi.org/10.1371/journal.pone.0043117
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gatew Comput Environ Workshop (GCE):1–8. https://doi.org/10.1109/gce.2010.5676129
Morton J, Bentivenga S, Bever J (1995) Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can J Bot 73(S1):25–32. https://doi.org/10.1139/b95-221
Nilsson RH, Larsson K-HH, Taylor AF et al (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. https://doi.org/10.1093/nar/gky1022
Oehl F, Laczko E, Oberholzer H-R et al (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fert Soils 53:777–797. https://doi.org/10.1007/s00374-017-1217-x
Öpik M, Vanatoa A, Vanatoa E et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. https://doi.org/10.1111/j.1469-8137.2010.03334.x
Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147. https://doi.org/10.1139/cjb-2013-0110
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584
Saeedghalati M, Farahpour F, Hoffmann D (2016) RADanalysis: normalization and study of rank abundance distributions. R package version 0.5.5. https://CRAN.R-project.org/package=RADanalysis
Saks Ü, Davison J, Öpik M et al (2014) Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany 92:277–285. https://doi.org/10.1139/cjb-2013-0058
Sato K, Suyama Y, Saito M, Science S-K (2005) A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl Sci 51:179–181. https://doi.org/10.1111/j.1744-697x.2005.00023.x
Sayers EW, Cavanaugh M, Clark K et al (2019) GenBank. Nucleic Acids Res 47:D94–D99. https://doi.org/10.1093/nar/gkz956
Schlaeppi K, Bender FS, Mascher F et al (2016) High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol 212:780–791. https://doi.org/10.1111/nph.14070
Schoch C, Seifert K, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/pnas.1117018109
Sidhoum W, Fortas Z (2019) The beneficial role of indigenous arbuscular mycorrhizal fungi in phytoremediation of wetland plants and tolerance to metal stress. Arch Environ Prot 45:103–114. https://doi.org/10.24425/aep.2019.125916
Sosa-Hernández M, Roy J, Hempel S et al (2018) Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil. Soil Biol Biochem 117:83–86. https://doi.org/10.1016/j.soilbio.2017.11.009
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Stürmer SL, Bever JD, Morton JB (2018) Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28:587–603. https://doi.org/10.1007/s00572-018-0864-6
Tedersoo L, Sánchez-Ramírez S, Kõljalg U et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159. https://doi.org/10.1007/s13225-018-0401-0
Tiedje J, Asuming-Brempong S, Nüsslein K et al (1999) Opening the black box of soil microbial diversity. App Soil Ecol 1:109–122. https://doi.org/10.1016/s0929-1393(99)00026-8
Tipton A, Middleton E, Spollen W, Galen C (2019) Anthropogenic and soil environmental drivers of arbuscular mycorrhizal community composition differ between grassland ecosystems. Botany 97:85–99. https://doi.org/10.1139/cjb-2018-0072
Varela-Cervero S, Vasar M, Davison J et al (2015) AMF community composition of mycorrhizal propagules. Environ Microbiol 17:2882–2895. https://doi.org/10.1111/1462-2920.12810
Vasar M, Andreson R, Davison J, Jairus T, Moora M, Remm M, Young JPW, Zobel M, Öpik M (2017) Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. Mycorrhiza 27:761–773. https://doi.org/10.1007/s00572-017-0791-y
Acknowledgments
We are grateful to Marie-Josée Bergeron and James Tambong for insightful comments on an early draft of the manuscript; Susan Young for her assistance in literature review; Kitty Cheung and Julie Chapados, from the Molecular Technology Laboratory (Ottawa-RDC, AAFC), for their assistance with MiSeq library preparation and Illumina sequencing. The authors thank the two anonymous reviewers for their useful comments.
Funding
This work was supported by funding from the Agriculture and Agri-Food Canada through the projects J-002272 and J-002295.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Franck Stefani is the Curator of the Canadian Collection of Arbuscular Mycorrhizal Fungi.
Electronic supplementary material
ESM 1
(DOCX 1.93 mb)
Rights and permissions
About this article
Cite this article
Stefani, F., Bencherif, K., Sabourin, S. et al. Taxonomic assignment of arbuscular mycorrhizal fungi in an 18S metagenomic dataset: a case study with saltcedar (Tamarix aphylla). Mycorrhiza 30, 243–255 (2020). https://doi.org/10.1007/s00572-020-00946-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00572-020-00946-y