Skip to main content
Log in

Seasonal shifts of arbuscular mycorrhizal fungi in Cocos nucifera roots in Yucatan, Mexico

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The diversity and community structure of arbuscular mycorrhizal fungi (AMF) associated with coconut (Cocos nucifera) roots was evaluated by next generation sequencing (NGS) using partial sequences of the 18S rDNA gene and by spore isolation and morphological identification from rhizosphere soil. Root samples from six different Green Dwarf coconut plantations and from one organic plantation surrounded by tropical dry forest along the coastal sand dunes in Yucatan, Mexico, were collected during the rainy and dry seasons. In total, 14 root samples were sequenced with the Illumina MiSeq platform. Additionally, soil samples from the dry season were collected to identify AMF glomerospores. Based on a 95–97% similarity, a total of 36 virtual taxa (VT) belonging to nine genera were identified including one new genus-like clade. Glomus was the most abundant genus, both in number of VT and sequences. The comparison of dry and rainy season samples revealed differences in the richness and composition of AMF communities colonizing coconut roots. Our study shows that the main AMF genera associated with coconut tree roots in all samples were Glomus, Sclerocystis, Rhizophagus, Redeckera, and Diversispora. Based on glomerospore morphology, 22 morphospecies were recorded among which 14 were identified to species. Sclerocystis sinuosa, Sclerocystis rubiformis, Glomus microaggregatum, and Acaulospora scrobiculata were dominant in field rhizosphere samples. This is the first assessment of the composition of AMF communities colonizing coconut roots in rainy and dry seasons. It is of importance for selection of AMF species to investigate for their potential application in sustainable agriculture of coconut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambili K, Thomas GV, Indu P, Gopal M, Gupta A (2012) Distribution of arbuscular mycorrhizae associated with coconut and arecanut based cropping systems. Agric Res 1:338–345

    Google Scholar 

  • Anderson MJ (2001) A new method for nonparametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • APCC-Secretariat (ed) (2016) Coconut statistical yearbook 2014. vol May, 2016. Jakarta, Indonesia, p 306

  • de Assis DMA, Oehl F, Gonçalves CM et al (2016) Community structure of arbuscular mycorrhizal fungi in fluvial and maritime dunes of Brazilian Northeast. Appl Soil Ecol 108:136–146. https://doi.org/10.1016/j.apsoil.2016.07.018

    Article  Google Scholar 

  • Baudouin L, Lebrun P (2009) Coconut (Cocos nucifera L.) DNA studies support the hypothesis of an ancient Austronesian migration from Southeast Asia to America. Genet Resour Crop Evol 56(2):257–262

    Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis, part 3. Soil Science Society of America, Madison, pp 1085–1121

  • Berruti A, Bianciotto V, Lumini E (2018) Seasonal variation in winter wheat field soil arbuscular mycorrhizal fungus communities after non-mycorrhizal crop cultivation. Mycorrhiza 28(5–6):535–548

    PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    CAS  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220(4):1108–1115

    PubMed  Google Scholar 

  • Carmona-Escalante A, Guadarrama P, Ramos-Zapata J, Castillo-Argüello S, Montaño NM (2013) Hongos micorrizógenos arbusculares asociados a la vegetación costera de Chuburná, Yucatán, México. Trop Subtrop Agroecosyst 16:431–443

    Google Scholar 

  • Castillo SA, Moreno-Casasola P (1996) Coastal sand dune vegetation: an extreme case of species invasion. J Coast Conserv 2(1):13–22

    Google Scholar 

  • Chan E, Elevitch CR (2006) Cocos nucifera (coconut). Species profiles for Pacific Island. Agroforestry 2:1–27

    CAS  Google Scholar 

  • Colwell RK (2009) EstimateS 8.2. 0 for Windows. University of Connecticut, Connecticut

    Google Scholar 

  • Córdova I, Oropeza C, Puch-Hau C, Harrison N, Collí-Rodríguez A, Narvaez M, Nic-Matos G, Reyes C, Sáenz L (2014) A real-time PCR assay for detection of coconut lethal yellowing phytoplasmas of group 16SrIV subgroups a, D and E found in the Americas. J Plant Pathol 96(2):343–352

    Google Scholar 

  • Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Shenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minessotta, USA, pp 29–35

    Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349(6251):970–973

    CAS  PubMed  Google Scholar 

  • Duch-Gary J (1991) Fisiografía del estado de Yucatán. Universidad Autónoma de Chapingo, México

    Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190(3):794–804

    CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espejel I (1987) A phytogeographical analysis of coastal vegetation in the Yucatan peninsula. J Biogeogr:499–519

  • Espejel I, Jiménez-Orocio O, Castillo-Campos G et al (2017) Flora en playas y dunas costeras de México. Act Bot Mex 121:39–81

    Google Scholar 

  • Faostat F (2016) Agriculture Organization of the United Nations Statistics Division. Economic and Social Development Department, Rome, Italy. Available online: http://faostat3.fao.org/home/E (accessed on 31 December 2016)

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Gonzalez-Herrera R, Martinez-Santibañez E, Pacheco-Avila J, Cabrera-Sansores A (2014) Leaching and dilution of fertilizers in the Yucatan karstic aquifer. Environ Earth Sci 72(8):2879–2886

    CAS  Google Scholar 

  • Guadarrama P, Ramos-Zapata J, Salinas-Peba L, Hernández-Cuevas L, Castillo S (2012) La vegetación de dunas costeras y su interacción micorrícica en Sisal, Yucatán: una propuesta de restauración. Recursos acuáticos costeros del sureste 2:131–152

    Google Scholar 

  • Guillén A, Mesquita-Joanes F, Peris JB, Arrillaga I (2019) Effects of environmental and temporal factors on Glomeromycotina spores in sand dunes along the Gulf of Valencia (Spain). Fungal Ecol 40:127–139. https://doi.org/10.1016/j.funeco.2018.07.001

    Article  Google Scholar 

  • Gurr GM, Johnson AC, Ash GJ, Wilson BAL, Ero MM, Pilotti CA, Dewhurst CF, You MS (2016) Coconut lethal yellowing diseases: a phytoplasma threat to palms of global economic and social significance. Front Plant Sci 7:1521

    PubMed  PubMed Central  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9

  • Harrison NA, Richardson PA, Kramer JB, Tsai JH (1994) Detection of the mycoplasma-like organism associated with lethal yellowing disease of palms in Florida by polymerase chain reaction. Plant Pathol 43:998–1008

    CAS  Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423

    PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394(6692):431

    CAS  PubMed  Google Scholar 

  • Herrmann L, Lesueur D, Bräu L et al (2016) Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza 26(8):863–877

    PubMed  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Google Scholar 

  • Jiang S, Liu Y, Luo J et al (2018) Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. New Phytol 220:1222–1235

    PubMed  Google Scholar 

  • Johansen RB, Vestberg M, Burns BR, Park D, Hooker JE, Johnston PR (2015) A coastal sand dune in New Zealand reveals high arbuscular mycorrhizal fungal diversity. Symbiosis 66(3):111–121

    Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Google Scholar 

  • Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan HH, Krishnakumar V (2018) Soil productivity and nutrition. In: The coconut palm (Cocos nucifera L.)-research and development perspectives. Springer, Singapore, pp 323–442

    Google Scholar 

  • Kilmer VJ, Alexander LT (1949) Methods of making mechanical analyses of soils. Soil Sci 68(1):15–24

    Google Scholar 

  • Köhl L, van der Heijden MG (2016) Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem 94:191–199

    Google Scholar 

  • Koske RE, Gemma JN, Flynn T (1992) Mycorrhizae in Hawaiian angiosperms: a survey with implications for the origin of the native Flora. Am J Bot 79:853–862

    Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota:one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183(1):212–223

    PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo S (1996) Phosphorus. In: JM Bidgham (ed) Methods of soil analysis, Part 3. SSSA Book series 5, SSSA, Madison, WI, USA, pp 869–919

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    CAS  PubMed  Google Scholar 

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum. Publication from USDA-ARS/UNL Faculty. Chapter 15, Lincoln, Nebraska, p 39

    Google Scholar 

  • Martínez ML, Psuty NP (2004) Coastal dunes. Springer, Berlin

    Google Scholar 

  • Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93(8):976–981

    CAS  PubMed  Google Scholar 

  • Menzel A, Hempel S, Klotz S, Moora M, Pyšek P, Rillig MC, Zobel M, Kühn I (2017) Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98(1):92–102

    PubMed  Google Scholar 

  • Miguel FN, de Holanda JS, Dias N d S, Gheyi HR, Folegatti MV (2011) Growth and yield of Anão Verde coconut under fertigation with nitrogen and potassium. Rev Bras Eng Agric Ambient 15(7):657–664

    Google Scholar 

  • Moora M, Berger S, Davison J et al (2011) Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr 38(7):1305–1317

    Google Scholar 

  • Moreno-Casasola P, Espejel I (1986) Classification and ordination of coastal sand dune vegetation along the Gulf and Caribbean Sea of Mexico. Vegetatio 66(3):147–182

    Google Scholar 

  • Morton JB (1993) Problems and solutions for integration of glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycorrhiza 2:97–109

    Google Scholar 

  • Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32:267–324

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20(7):483–496

    PubMed  Google Scholar 

  • Muthukumar T, Prakash S (2009) Arbuscular mycorrhizal morphology in crops and associated weeds in tropical agro-ecosystems. Mycoscience 50:233–239

    Google Scholar 

  • Muthukumar T, Vediyappan S (2010) Comparison of arbuscular mycorrhizal and dark septate endophyte fungal associations in soils irrigated with pulp and paper mill effluent and well-water. Eur J Soil Biol 46:157–167

    CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    CAS  PubMed  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis, part 3. Chemical Methods. SSSA and ASA, Madison, pp 961–1010

  • Öpik M, Davison J (2016) Uniting species-and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecol 24:106–113

    Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1):223–241

    PubMed  Google Scholar 

  • Öpik M, Davison J, Moora M, Zobel M (2013a) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92(2):135–147

    Google Scholar 

  • Öpik M, Zobel M, Cantero JJ et al (2013b) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411e430

    Google Scholar 

  • Pacheco J, Martin L, Gabrera A, Steinich B, Escolcra O (2001) Nitrate temporal and spatial pattern in 12 water supply wells location, Mexico. Environ Geol 40(6):708–715

    CAS  Google Scholar 

  • Patrick WH Jr, Gambrell RP, Faulkner SP (1996) REDOX measurements of soils. In: Sparks DL (ed) Methods of soil analysis: part 3. Chemical methods, soil science Society of America Book Series, vol 5. American Society of Agronomy-Soil Science Society of America, Madison, pp 1085–1123

  • Perera L, Perera SA, Bandaranayake CK, Harries HC (2009) Coconut. In: Oil crops. Springer, New York, NY, pp 369–396

    Google Scholar 

  • Polanco G, Carrillo L, Espadas C, Reyes-García C, Guadarrama P, Orellana R. (2013) Asociación micorrízica arbuscular en Coccothrinax readii Quero. Trop Subtrop Agroecosyst 16:223–233

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32(1):181–200

    CAS  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2015) Insight into the role of arbuscular mycorrhizal fungi in sustainable agriculture. In: Environmental Sustainability. Springer, New Delhi, pp 3–37

    Google Scholar 

  • Pushparajah E, Cnah F, Magat SS (1990) Phosphorus requirements and management of oil palm, coconut and rubber. Phosphorus requirements for sustainable agriculture in Asia and Oceania 399–425

  • Rajeshkumar PP, George VT, Gupta A, Gopal M (2015) Diversity, richness and degree of arbuscular mycorrhizae fungi colonization in coconut cultivated along with intercrops in high productive zone of Kerala, India. Symbiosis 65:125–141

    Google Scholar 

  • Ramesh CR (1984) Root infection and population density of VA mycorrhizal fungi in a coconut based multistoreyed cropping system. Proc Plantation Crops Symposium V (PLACROSYM), pp 548–554

  • Ramírez-Viga T, Guadarrama P, Castillo-Argüero S, Estrada-Medina H, García-Sánchez R, Hernández-Cuevas L, Sánchez-Gallén I, Ramos-Zapata J (2019) Relationship between arbuscular mycorrhizal association and edaphic variables in mangroves of the coast of Yucatán, Mexico. Wetlands:1–11. https://doi.org/10.1007/s13157-019-01196-1

  • Ramos-Zapata JA, Orellana R, Allen EB (2006) Establishment of Desmoncus orthacanthos Martius (Arecaceae): effect of inoculation with arbuscular mycorrhizae. Rev Biol Trop 54(1):65–72

    PubMed  Google Scholar 

  • Ramos-Zapata JA, Marrufo D, Guardarrama P, Carrillo L (2010) Hongos micorrízico-arbusculares. In: Durán-García R, Méndez-González ME (eds) Biodiversidad y Desarrollo Humano en Yucatán. Yucatán, CICT, PPDFMAM, CONABIO, SEDUMA, pp 170–172

    Google Scholar 

  • Ramos-Zapata JA, Zapata-Trujillo R, Ortíz-Díaz JJ, Guadarrama P (2011) Arbuscular mycorrhizas in a tropical coastal dune system in Yucatan, Mexico. Fungal Ecol 4:256–261

    Google Scholar 

  • Ramos-Zapata JA, Marrufo-Zapata D, Guadarrama P, Carrillo-Sánchez L, Hernández-Cuevas L, Caamal-Maldonado A (2012) Impact of weed control on arbuscular mycorrhizal fungi in a tropical agroecosystem: a long-term experiment. Mycorrhiza 22(8):653–661

    PubMed  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    PubMed  Google Scholar 

  • Reinert JA (1977) Field biology and control of Haplaxius crudus on St. Agustine grass and Christmas palm. J Econ Entomol 70:54–56

    Google Scholar 

  • Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6(2):93–107

    Google Scholar 

  • Rodríguez-Echeverría S, Holb G, Freitas WH, Eason H, Cook WR (2008) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) link: spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44:30e36

    Google Scholar 

  • Rojas-Fabro AYR, Ávila JGP, Alberich MVE, Sansores SAC, Camargo-Valero MA (2015) Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl Geogr 65:49–57

    Google Scholar 

  • RTL Genomics (2016) Data analysis methodology, version 2.3.1. RTL Genomics. https://static1.squarespace.com/static/5807c0ce579fb39e1dd6addd/t/5813af0fd482e97e5eb4fcb5/1477685010205/. Data_Analysis_Methodology.Pdf. Accessed 15 May 2018

  • Sáenz L, Chan JL. Narvaez M, Oropeza C (2018) Protocol for the micropropagation of coconut from plumule explants. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant Cell Culture Protocols. Humana Press, New York, NY, pp 161–170

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Samosir YMS, Adkins SW (2014) Improving acclimatization through the photoautotrophic culture of coconut (Cocos nucifera) seedlings: an in vitro system for the efficient exchange of germplasm. In Vitro Cell Dev Plant 50:493–501. https://doi.org/10.1007/s11627-014-9599-z

    Article  CAS  Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi, vol 286. Synergistic Publications, Gainesville

    Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Schüßler A, Walker C, Gloucester, published in libraries at Royal Botanic Garden Edinburgh, Kew, Botanische Staatssammlung Munich, and Oregon State University; freely available online at www.amf-phylogeny.com. Accessed 1 Aug 2019

  • Sigüenza C, Espejel I, Allen EB (1996) Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza 6(2):151–157

    Google Scholar 

  • da Silva DKA, de Souza RG, de Velez BA, da Silva GA, Oehl F, Costa-Maia L (2015) Communities of arbuscular mycorrhizal fungi on a vegetation gradient in tropical coastal dunes. Appl Soil Ecol 96:7–17. https://doi.org/10.1016/j.apsoil.2015.06.009

    Article  Google Scholar 

  • Sosamma VK, Sobha AT, Samuel R, Iyer R (1998) Vesicular arbuscular mycorrhizae association with coconut palms proceedings of seminar on “bio agents in nematode management”. IARI, Delhi, p 43

    Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar KR, Beena KR (2001) Arbuscular mycorrhizal research in coastal sand dunes – a review. Proc Indian Acad Sci, (Plant Sci) 71:179–205

    Google Scholar 

  • Stürmer SL, Bellei MM (1994) Composition and seasonal variation of spore populations of arbuscular mycorrhizal fungi in dune soils on the island of Santa Catarina, Brazil. Can J Bot 72(3):359–363

    Google Scholar 

  • Stürmer SL, Oliveira LZ, Morton JB (2018) Gigasporaceae versus Glomeraceae (phylum Glomeromycota): a biogeographic tale of dominance in maritime sand dunes. Fungal Ecol 32:49–56

    Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 pyrosequencing and sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    CAS  PubMed  Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. Methods of soil analysis part 3—chemical methods, pp 475–490

  • Thomas GV, Ghai SK (1987) Genotype dependent variation in vesicular arbuscular mycorrhizal colonization of coconut seedlings. Proc Indian Acad Sci, (Plant Sci) 97:289–294

    Google Scholar 

  • Torres W, Méndez M, Dorantes A, Durán R (2010) Estructura, composición y diversidad del matorral de duna costera en el litoral yucateco. Bol Soc Bot Méx 86:37–51

    Google Scholar 

  • Trappe JM (1977) Three new endogonaceae: Glomus constrictus, Sclerocystis clavispora, and Acaulospora scrobiculata. Mycotaxon 6(2):359–366

    Google Scholar 

  • Varela L, Hernández-Cuevas LV, Chimal-Sánchez E, Montaño NM (2019) Diversidad taxonómica de hongos micorrizógenos arbusculares citados de Mexico. In: Biodiversidad de Microorganismos de México importancia, aplicación y conservación. Universidad Autónoma de México, Ciudad de México, pp 8–38

    Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363

    CAS  PubMed  Google Scholar 

  • Zizumbo-Villarreal D, Colunga-García-Marín P, Fernández-Barrera M, Torres-Hernández N, Oropeza C (2008) Mortality of Mexican coconut germplasm due to lethal yellowing. Plant Genetic Resour Newslett, FAO-Biovers 156:23–33

    Google Scholar 

Download references

Acknowledgments

We are in a great debt to Juan Humberto Coronado Navarro for providing logistic support and collecting in the field.

Funding

LALP wishes to thank the Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, for its financial support through a postdoctoral scholarship. This work was partially supported by FORDECYT 296195 and used infrastructure acquired through funding of the project CONACYT 269833.

Author information

Authors and Affiliations

Authors

Contributions

LALP and LS designed and conducted the experiments, analyzed the data, and wrote the manuscript. I O-O conducted the statistical analysis and edited the manuscript. I C-L conducted experiments, H E-M conducted the soil analysis, analyzed the data, and edited the manuscript. A O-S and E G-C analyzed the data and edited the manuscript.

Corresponding author

Correspondence to Luis Sáenz-Carbonell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure 1S

Rarefaction curves showing the richness of arbuscular mycorrhizal fungi virtual taxa (VT) based on a neighbor-joining phylogenetic tree and numbers of reads found in coconut roots in representative growing areas of Yucatan. (JPG 278 kb)

Figure 2S

Non-metric multidimensional scaling ordination based on Bray-Curtis distances of AM fungal communities associated with coconut roots in rainy and dry seasons. (JPG 160 kb)

Figure 3S

Glomerospores of arbuscular mycorrhizal fungi associated with the rhizosphere of Cocos nucifera in Yucatan Mexico. A) Sclerocystis rubiformis, B) Sclerocystis aff taiwanensis C) Sclerocystis sinuosa, D) Acaulospora rehmii, E) Glomus geosporum, F) Ambispora sp. G) Acaulospora scrobiculata, H) Glomus glomerolatum, I) Funneliformis sp. J) Claroideoglomus sp., K) Glomus microaggregatum, L) Gigaspora aff. Gigantea, M) Septoglomus constrictum N) Dominikia aureum, O) Racocetra aff. Gregaria. Bar = 50 μm (JPG 21910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Pérez, L.A., Oros-Ortega, I., Córdova-Lara, I. et al. Seasonal shifts of arbuscular mycorrhizal fungi in Cocos nucifera roots in Yucatan, Mexico. Mycorrhiza 30, 269–283 (2020). https://doi.org/10.1007/s00572-020-00944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-00944-0

Keywords

Navigation